PHYS 3B Course Outline as of Fall 1999

CATALOG INFORMATION

Dept and Nbr: PHYS 3B Title: GENERAL PHYSICS LAB

Full Title: General Physics Lab Last Reviewed: 2/25/2019

Units		Course Hours per Week	. N	Nbr of Weeks	Course Hours Total	
Maximum	1.00	Lecture Scheduled	0	17.5	Lecture Scheduled	0
Minimum	1.00	Lab Scheduled	3.00	17.5	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 0.00 Total Student Learning Hours: 52.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Laboratory experiments to accompany Physics 2B.

Prerequisites/Corequisites:

Phys 2B completed or in progress.

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Lab experiments to accompany Physics 2B. (Grade or P/NP)

Prerequisites/Corequisites: Phys 2B completed or in progress.

Recommended:

Limits on Enrollment:

Transfer Credit: CSU;UC. (CAN PHYS 3B+PHYS 2B=PHYS4)(PHYS 3B+PHYS 3A+PHYS

2B+PHYS 2A=PHYS SEQ A)

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

3 Laboratory Activity Spring 1982

IGETC: Transfer Area Effective: Inactive:

5C Fulfills Lab Requirement Fall 1981

CSU Transfer: Transferable Effective: Spring 1982 Inactive: Fall 2021

UC Transfer: Transferable Effective: Spring 1982 Inactive: Fall 2021

CID:

CID Descriptor: PHYS 100S Algebra/Trigonometry-Based Physics: AB

SRJC Equivalent Course(s): PHYS20 AND PHYS20L AND PHYS21 AND PHYS21L OR

PHYS20A AND PHYS20B

CID Descriptor:PHYS 110 Algebra/Trigonometry-Based Physics B SRJC Equivalent Course(s): PHYS21 AND PHYS21L OR PHYS20B

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, the student should be able to:

- 1. Explain concepts of electric charge, current, resistance, potential difference and emf.
- 2. Perform a number of experiments to analyze DC and AC circuits including constructing circuits containing various combinations of resistance, coils and capacitors and making measurements using a digital multimeter, the oscilloscope, and the computer with current probes and voltage probes.
- 3. Measure magnetic fields using the computer and a magnetic field probe and determine the direction of induced currents produced by changing magnetic fields.
- 4. Explain concepts involving the formation of images by pin holes and lenses.
- 5. Construct a microscope and telescopes and explain their operation.
- 6. Determine the wavelength of light from a gas discharge tube using a spectroscope.
- 7. Use a computer with a radiation detector to measure the activity of a radioactive source.
- 8. Construct graphs using computer graphing programs for the analysis of experimental data including variations of strength of magnetic field with distance from a permanent magnet or electromagnet, resonance curves for RLC circuits, the calibration

curve for a spectroscope, variations of intensity of radiation with distance from a radioactive source.

Topics and Scope:

Topics covered include:

- 1. Electrostatics.
- 2. Fundamental concepts of DC circuits: current, resistance, voltage, emf.
- 3. Fundamentals of DC circuits: resistance in series and parallel.
- 4. Magnetic fields: the earth•s field, permanent magnets, current-carrying coils.
- 5. Electromagnetic induction and transformers.
- 6. Inductance, capacitance and resonance.
- 7. Images formed using pin holes and lenses.
- 8. Microscopes and telescopes.
- 9. Analysis of light by a spectroscope.
- 10. Radioactive decay and the inverse square law of radiation.

Assignment:

- 1. No less than 12 laboratory experiments.
- 2. One mid-term exam.
- 3. Final exam.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Lab reports, Exams

Problem solving 0 - 0%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations

Exams: All forms of formal testing, other than skill performance exams.

PHYSICS PROBLEMS TO SOLVE

Exams 20 - 30%

Other: Includes any assessment tools that do not logically fit into the above categories.

LAB REPORTS		Other Category 70 - 80%
-------------	--	----------------------------

Representative Textbooks and Materials: Physics Laboratory Experiments by Wilson, 4th Edition, 1994, D.C. Heath & Co.