MATH 58 Course Outline as of Fall 2006

CATALOG INFORMATION

Dept and Nbr: MATH 58 Title: TRIGONOMETRY

Full Title: Trigonometry Last Reviewed: 2/10/2020

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Topics from trigonometry including trigonometric functions and their graphs, trigonometric identities, trigonometric equations, inverse trigonometric functions, complex numbers, polar coordinates, parametric equations, vectors, and applications.

Prerequisites/Corequisites:

Completion of MATH 155 or higher (V1)

Recommended Preparation:

No advisories.

Limits on Enrollment:

Schedule of Classes Information:

Description: Topics from trigonometry including trigonometric functions and their graphs, trigonometric identities, trigonometric equations, inverse trigonometric functions, complex numbers, polar coordinates, parametric equations, vectors, and applications. (Grade Only)

Prerequisites/Corequisites: Completion of MATH 155 or higher (V1)

Recommended: No advisories.

Limits on Enrollment:

Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

B Communication and Analytical Fall 2006

Thinking

B Communication and Analytical Fall 1981 Fall 1999

Thinking

MC Math Competency

CSU GE: Transfer Area Effective: Inactive:

B4 Math/Quantitative Reasoning Fall 2006

B4 Math/Quantitative Reasoning Fall 1981 Fall 1996

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 2006 Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course, students will be able to:

- 1. Define the trigonometric functions.
- 2. Use radian measure to find arc length, sector area, and linear and angular velocity.
- 3. Verify trigonometric identities.
- 4. Solve, both graphically and analytically, equations involving trigonometric functions.
- 5. Graph trigonometric functions and shifts, reflections and stretches of these functions.
- 6. Define and graph the inverse trigonometric functions.
- 7. Apply trigonometric functions and identities to solve applications and modeling problems.
- 8. Solve right and oblique triangles using the trigonometric functions and the Laws of Sine and Cosine.
- 9. Represent complex numbers in, and perform operations using, trigonometric form.
- 10. Use vectors to model applications in mathematics and science.

Topics and Scope:

Instructional methodology may include, but is not limited to: lecture, demonstrations, oral recitation, discussion, supervised practice, independent study, outside project or other assignments.

- I. Trigonometric Functions
 - A. Radian and degree measures of angles
 - 1. Arc length
 - 2. Area of a sector
 - 3. Linear and angular velocity
 - B. Right triangle and unit circle definitions
 - C. Characteristics of trigonometric functions
- II. Identities and Conditional Equations
 - A Fundamental identities
 - B. Sum and difference identities
 - C. Related identities and their derivations
 - D. Conditional trigonometric equations
- III. Graphical Representation of Trigonometric Functions
 - A. Amplitude
 - B. Period
 - C. Phase (horizontal) shifts
 - D. Vertical shifts
- IV. Inverse Functions
 - A. Definition
 - B. Properties of inverse functions
 - C. Inverse trigonometric functions and their graphs
- V. Solutions of Triangles
 - A. Right triangles
 - B. Oblique triangles
 - C. Laws of Sines and Cosines
 - D. Applications
- VI. Complex Numbers, Polar Coordinates, and Parametric Equations
 - A. Definitions
 - B. Operations
 - C. Graphical representation of complex numbers
 - D. DeMoivre's Theorem
 - E. Polar coordinates
 - F. Parametric equations
- VII. Two Dimensional Vectors
 - A. Geometric and analytic definitions
 - B. Algebra of vectors
 - C. Trigonometric form of vectors
 - D. Dot product
 - E. Applications

Assignment:

- 1. Daily reading outside of class (approximately 0-50 pages per week)
- 2. Problem set assignments from required text(s)or supplementary materials chosen by the instructor
- 3. Exams and quizzes
- 4. Projects

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Problem solving 5 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, Free response exams, quizzes

Exams 70 - 95%

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects (e.g., computer projects or measurement activities)

Other Category 0 - 10%

Representative Textbooks and Materials:

Text(s) required of each student will be selected by the department, a committee of the department, or the responsible instructor from the books currently available. Choices in the past have included: Trigonometry Enhanced With Graphing Utilities (4th). Sullivan, Michael and Sullivan III, Michael. Prentice Hall: 2006.

Trigonometry (1st). Dugopolski, Mark. Addison Wesley: 2003.