BIO 10 Course Outline as of Spring 2004

CATALOG INFORMATION

Dept and Nbr: BIO 10 Title: INTRO PRIN BIOLOGY Full Title: Introduction to Principles of Biology Last Reviewed: 1/28/2019

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	1	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Introductory course in biology including: scientific method, ecology, bio diversity, physiology and anatomy, chemistry of life, cell and molecular biology, genetics, and evolution. Meets general education laboratory science requirement.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100.

Limits on Enrollment:

Schedule of Classes Information:

Description: Introductory course in biology including: scientific method, ecology, bio diversity, physiology and anatomy, chemistry of life, cell and molecular biology, genetics, and evolution. Meets general education laboratory science requirement. (Grade or P/NP) Prerequisites/Corequisites: Recommended: Eligibility for ENGL 100 or ESL 100. Limits on Enrollment:

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area C Transfer Area B2 B3	Natural Science Life Science Laboratory Act		Effective: Fall 1981 Effective: Fall 1981	Inactive: Inactive:
IGETC:	Transfer Area 5B 5C	n Biological Sciences Fulfills Lab Requirement		Effective: Fall 1981	Inactive:
CSU Transfer	:Transferable	Effective:	Fall 1981	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1981	Inactive:	

CID:

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of this course, student will:

- 1. Apply the steps in the scientific method of hypotheses, experiments, data collection and theories, as well as the use of statistics.
- 2. Recognize and name the major levels of biological organization from atoms and cells to ecosystems and biomes.
- 3. Relate abiotic factors to the distribution of world biomes.
- 4. Explain how ecosystems are structured through energy flow, material cycles (i.e., water, carbon and nitrogen), and various trophic levels.
- 5. Evaluate species interactions to distinguish mutualism, predation, parasitism, herbivory, commensalism, and competition, including coevolution.
- 6. Describe how population density, dispersal, and growth are limited by environmental and intrinsic factors and apply these concepts to human populations.
- 7. Examine successional change in communities and the underlying causes.
- 8. Compare and contrast the nutrient acquisition, gas exchange, and internal transport mechanisms of plants and animals.
- 9. Differentiate the identifying characteristics and representatives of the major Domains and Kingdoms of organisms.
- 10. Summarize the structure of atoms, molecules, biological polymers and their significance to cell structure and function, anatomy, physiology, genetics and evolution.
- 11. Compare and contrast the cell structures, ultrastructures, membranes, and membrane transport and the functions of these structures and interactions found in prokaryotic, eukaryotic, plant and animal cells.

- 12. Synthesize knowledge of enzyme reactions with cellular functions, metabolism, photosynthesis, cell respiration and organismal function.
- 13. Compare and contrast methods of cellular reproduction (mitosis, meiosis and binary fission) and their significance.
- 14. Explain how DNA codes for proteins, how the code is translated by the cell, and the relationship to scientific traits and inheritance.
- 15. Synthesize knowledge of the mechanisms of evolution, adaptation, and speciation.
- 16. Relate the principles of genetics to the processes of evolution.
- 17. Describe the values, themes, methods and history of the discipline and identify realistic career objectives related to a course of study in the major.

Topics and Scope:

- 1. Methods and philosophies of science
 - a. Steps in scientific method to laboratory experiments
 - b. Statistics in hypothesis testing
 - c. Hypothesis and theories
- 2. Biological Hierarchy: Discuss levels of biological organization from atoms and cells to the biosphere
- 3. Introduction to the Biosphere and major world biomes
- 4. Ecology of Ecosystems: Nutrient cycles (water, carbon, nitrogen), energy flow, trophic structure
- 5. Populations
 - a. Structure (density, dispersion, age structure)
 - b. Function (exponential, logistic growth)
 - c. Human populations
 - d. Population fluctuations
 - e. Factors affecting carrying capacity
 - f. Density dependent/density independent
 - g. Limiting factors
- 6. Ecology of Communities: Interspecific species interactions, coevolution, succession
- 7. Types of Nutrition
 - a. Autotrophic and heterotrophic
 - b. Surface to volume ratio
 - c. Macromolecules, vitamins, and minerals
- 8. Comparative Physiology of
 - a. Microorganisms, plants, animals
 - b. Positive and negative feedback loops
- 9. Plant Structure and Function
 - a. Root, stem and leaf anatomy
 - b. Nutrition, gas exchange, transport (transpiration and phloem sap)
 - c. Plant reproduction
- 10. Comparative Animal Structure and Function of Different Animal Taxa: Nutrition and digestion, gas exchange, transport
- 11. Classification of Living Things
 - a. Prokaryotes vs. eukaryotes
 - b. Domain system, eukaryotic kingdoms
- 12. Diversity of Eukaryotic Kingdoms
 - a. Distinguishing characteristics

- b. Specialization of structure and function
- c. Ecology and evolution
- 13. Atomic Structures
 - a. Chemical bonding (ionic, covalent, hydrogen bonds)
 - b. pH
- 14. Properties of Water
 - a. Polarity and hydrogen bonding, cohesion and adhesion
 - b. States of matter
 - c. Osmosis and diffusion
- 15. Macromolecule Structure and Function
 - a. Dehydration synthesis and hydrolysis
 - b. Carbohydrates, lipids, proteins, nucleic acids
- 16. Cell structure and ultrastructure
 - a. Prokaryotic and eukaryotic cell structure
 - b. Cell organelles and their functions
 - c. Cell cytoskeleton and movement
 - d. Endosymbiotic hypothesis
- 17. Cell membrane structure and transport
 - a. Phospholipids bilayer
 - b. Membrane proteins
 - c. Passive and active transport, endocytosis and exocytosis
- 18. Enzymes
 - a. Structure and function
 - b. Positive and negative feedback loops
- c. Effect of substrate concentration, pH and temperature
- 19. Metabolic Pathways
 - a. Photosynthesis
 - 1) Properties of light and photopigments
 - 2) Substrate, products, and location of Light Dependent and Light Independent Reactions
 - b. Respiration
 - 1) Role of ATP
 - 2) Substrate, products, and location of Glycolysis, Krebs Cycle and Electron Transport Chain
 - 3) Aerobic vs. anaerobic respiration
- 20. Cellular Reproduction
 - a. Mitosis
 - b. Meiosis including sources of genetic variation
- 21. Molecular Genetics
 - a. DNA replication
 - b. Protein synthesis, genetic code
 - c. Mutations and mutagens
 - d. Changes in chromosome number and chromosome structure
- 22. Transmission Genetics
 - a. Mendelian: monohybrid crosses
 - b. Post Mendelian Genetics: partial dominance, blood type (multiple alleles), polygenic inheritance, autosomal linkage, sex linkage
 - c. Effects of environment on genetic expression
- 23. Contributions to Evolutionary Theory
 - a. Lamarck
 - b. Darwin and Natural Selection
- 24. Evidence for Evolution

- a. Comparative anatomy and physiology
- b. Molecular biology
- 25. Mechanisms of Evolution
 - a. Natural Selection, types of selection, gene flow
 - b. Genetic drift: bottlenecks, founders effect, small population, inbreeding
- 26. Biological Species Concept and Reproductive Isolation Mechanisms
- 27. Speciation and Adaptive Radiation
- 28. Use and care of compound and dissecting microscopes
- 29. Orientation to the values, themes, methods and history of the discipline and identification of realistic career objectives related to a course of study in the major.

Assignment:

- 1. Assigned reading from texts and other assigned reading.
- 2. Lab reports and/or essay assignments.
- 3. Scientific method of analysis and interpretation of data.
- 4. Assigned homework from laboratory or lecture assignments.
- 5. Objective examinations including: multiple choice and/or short essay lecture exams and short answer laboratory exams.
- 6. Demonstrate basic skill and handling of the microscope.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written homework, Lab reports or essays

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework/genetic probs, sci. meth. & analysis data

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Use and care of microscopes

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, Short answer and/or essay, lab exams (required)

Other: Includes any assessment tools that do not logically fit into the above categories.

Writing 5 - 10%

Problem solving 2 - 10%

Skill Demonstrations 2 - 5%

Exams 65 - 80% Class participation

Other Category 0 - 10%

Representative Textbooks and Materials:

BIOLOGY, CONCEPTS AND APPLICATIONS, 5th Edition, by C. Starr, 2003. BIOLOGY, CONCEPTS AND CONNECTIONS, 4th Edition, by Campbell, Reece Mitchell, and Taylor, 2003.