CHEM 60 Course Outline as of Spring 2008

CATALOG INFORMATION

Dept and Nbr: CHEM 60 Title: CHEM ALLIED HEALTH
Full Title: Chemistry for the Allied Health Sciences
Last Reviewed: 5/9/2022

Units		Course Hours per Week	Nbr of Weeks			Course Hours Total
Maximum	5.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	5.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	7.00		Contact Total	122.50
				Non-contact DHR	0	

Total Out of Class Hours: 140.00
Total Student Learning Hours: 262.50

Title 5 Category: AA Degree Applicable
Grading: Grade or P/NP
Repeatability: $\quad 00-$ Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:

Catalog Description:

Basic concepts of general, organic and biological chemistry. Satisfies the requirements of nursing and related majors that require one semester of chemistry.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100 and eligibility for MATH 150B.

Limits on Enrollment:

Schedule of Classes Information:

Description: Basic concepts of general, organic and biological chemistry. Satisfies the requirements of nursing and related majors that require one semester of chemistry. (Grade or P/NP)
Prerequisites/Corequisites:
Recommended: Eligibility for ENGL 100 or ESL 100 and eligibility for MATH 150B.
Limits on Enrollment:
Transfer Credit: CSU;

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area
CSU GE: Transfer Area

B1	Physical Science
B3	Laboratory Activity

IGETC: Transfer Area
CSU Transfer: Transferable Effective:

UC Transfer:
Effective:
Fall 1981 Inactive:

Inactive:

CID:

Certificate/Major Applicable:
Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of this course, the student will be able to:
I. Recognize, apply and demonstrate the appreciation of the underlying chemical foundations of medicine and life.
A. Recognize the structures and functional groups of lipids, carbohydrates, proteins and nucleic acids.
B. Apply an understanding of organic reactions.
C. Demonstrate the appreciation of the importance of solution properties in medicine.
II. Correlate microscopic and macroscopic behavior of matter.
A. Analyze bulk properties of gases from a molecular scale perspective.
B. Relate intermolecular forces to physical properties of substances.
C. Visualize and interpret molecular geometries, structures and isomerism in three dimensions.
III. Solve quantitative problems relating to chemical principles.
A. Calculate quantities related to concentrations of solutions.
B. Use moles and mole ratios to calculate quantities in reactions.
IV. Safely use basic equipment to observe and measure chemical and physical properties in the laboratory.
A. Assemble and handle lab equipment effectively.
B. Develop skills of observation and lab notebook maintenance.
C. Interpret observations using chemical principles.

Topics and Scope:

I. Atomic Theory
a. Structure of the atom
b. Organization of the periodic table
c. Ions
d. Mole concept
II. Laboratory measurements and calculations
III. Chemical Bonding and Molecular Structure
a. Ionic compounds
b. Covalent compounds
c. Organic structures and functional groups
d. Isomerism and stereochemistry
IV. Chemical Reactions
a. Balancing reactions
b. Basic organic reactions
c. Simple acid-base reactions
d. Le Chatelier's principle
V. Matter and Energy
a. Gases, liquids and solids
b. Qualitative atomic theory of gases
c. Intermolecular forces
VI. Solutions
a. Measures of concentration
b. Diffusion, osmosis and dialysis
c. pH and buffers
VII. Biological Chemistry
a. Lipids
b. Carbohydrates
c. Amino acids and peptides
d. Proteins
e. Nucleic Acids
f. Metabolism

Lab material will be chosen each semester to supplement or reinforce most of the topics above.
Sample Labs:

1. Measurements, Metric System and Conversions
2. Lewis Structures and Molecular Geometry
3. Reactions and Observations
4. Gases
5. Stoichiometry
6. Diffusion, Osmosis and Dialysis
7. Solutions
8. Lipids
9. Acids, Bases and Buffers
10. Carbohydrates
11. Amino Acids
12. Enzymes
13. Lab Skill Evaluation

Assignment:

1. Weekly reading and study (averaging 1 chapter)
2. Weekly chapter exercises (averaging 20 problems)
3. Weekly laboratory reports
4. Previewing upcoming laboratory experiments and completing any pre-lab

Exercise
5. Semester exams, 3-5

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Lab reports

Writing 15-35\%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.
Chapter exercises

Problem solving 1-10\%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Lab skill evaluation
Skill Demonstrations
1-5\%
Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, Completion, Short essay
Exams
60-80\%
Other: Includes any assessment tools that do not logically fit into the above categories.

Class and laboratory participation

Other Category 0-5\%

Representative Textbooks and Materials:

General, Organic and Biological Chemistry: An Integrated Approach, by Kenneth W. Raymond, 1st Ed., Wiley, 2006 Foundations of General, Organic and Biochemistry, by Katherine J. Denniston and Joseph J. Topping, 1st Ed., McGraw-Hill,2007 Chemistry: An Introduction to General, Organic and Biological Chemistry, 9th Ed., by Karen C. Timberlake, Pearson Prentice Hall, 2005 Laboratory Manuals:
Laboratory Manual for General, Organic and Biological Chemistry, by Karen C. Timberlake, Pearson Benjamin Cummings, 2007 Exploring Chemistry: Laboratory Experiments in General, Organica and Biological Chemistry, 2nd Ed., by Julie R. Peller, Pearson Prentice Hall, 2004

