MATH 25 Course Outline as of Fall 2006

CATALOG INFORMATION

Dept and Nbr: MATH 25 Title: COLLEGE ALGEBRA

Full Title: College Algebra Last Reviewed: 2/8/2021

Units		Course Hours per Week	•	Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Topics from college algebra, including analytic geometry, functions and their graphs, complex numbers, sequences and series.

Prerequisites/Corequisites:

Completion of MATH 155 or higher (V1)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: (Grade Only)

Prerequisites/Corequisites: Completion of MATH 155 or higher (V1)

Recommended:

Limits on Enrollment: Transfer Credit: CSU;UC.

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Effective: Inactive: Area

> Communication and Analytical Fall 2006 В

Thinking

Math Competency MC Fall 1981

CSU GE: Transfer Area Effective: **Inactive:** Math/Quantitative Reasoning

Fall 2006

IGETC: Transfer Area Effective: **Inactive:**

> 2AMathematical Concepts & Fall 2006

> > Quantitative Reasoning

CSU Transfer: Transferable Effective: Fall 2006 Inactive:

UC Transfer: Transferable Effective: Fall 2006 **Inactive:**

CID:

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course, students will be able to:

- 1. Perform advanced operations with functions (using symbolic, graphical, and numerical representations) and apply knowledge to modeling problems.
- 2. Define and graph inverse functions.
- 3. Solve algebraic equations over the complex numbers.
- 4. Define and apply characteristics of functions (including intercepts, turning points, intervals of positive/negative, increasing/decreasing value) in graphing polynomial, rational, algebraic, exponential, and logarithmic functions.
- 5. Solve algebraic equations graphically and symbolically, including absolute value, polynomial, radical, rational, logarithmic, and exponential.
- 6. Graph circles, functions, and parametric equations.
- 7. Graph asymptotes and recognize a hole in the graph.
- 8. Perform operations with complex numbers.

Topics and Scope:

Instructional methodology may include, but is not limited to: lecture, demonstrations, oral recitation, discussion, supervised practice, independent study, outside project or other assignments.

- I. Equations and Inequalities
 - A. Graphical and algebraic solutions to radical and absolute value equations and inequalities
 - B. Solutions to systems of equations and inequalities
- II. Complex Numbers

- A. Definition
- B. Operations with complex numbers

III. Analysis of Graphs of Functions

- A. Definition
- B. Notation
- C. Domain
- D. Range
- E. Operations and composition of functions
- F. Catalog of functions
- G. Symmetry
- H. Even and odd functions
- I. Shifts
- J. Scaling
- K. Reflections of graphs, along with modeling
- IV. Polynomial and Rational Functions
 - A. Linear, quadratic, polynomial functions of higher degree and their graphs
 - B. Graphs of rational functions
 - C. Asymptotes
 - D. Introduction to limit concepts and notation
 - E. Solutions of polynomial and rational equations and inequalities
- V. Inverse, Exponential and Logarithmic Functions
 - A. Definitions
 - B. Properties
 - C. Graphs
 - D. Equations
 - E. Applications
- VI. Sequences and Series
 - A. Finite and infinite geometric sequences and series
 - B. Summation of powers of integers
- VII. Topics from Analytic Geometry
 - A. Midpoint and distance formulas
 - B. Circles
 - C. Parabolas
 - D. Parametric equations

Assignment:

- 1. Daily reading outside of class (approximately 0-50 pages per week),
- 2. Problem set assignments from required text(s),
- 3. Exams and quizzes,
- 4. Complete supplementary materials chosen by the instructor, OR
- 5. Projects.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Problem solving 5 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, Free response exams, quizzes

Exams 70 - 95%

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Other Category 0 - 10%

Representative Textbooks and Materials:

College Algebra: A Graphing Approach (4th ed.). Larson, Ron; Hostetler,

Robert; Edwards, Bruce. Houghton-Mifflin: 2005.

College Algebra (7th ed). Sullivan, Michael. Prentice Hall: 2005. College Algebra: A Graphing Approach (2nd ed.). Williams, Gareth.

Brooks/Cole: 2005.