MATH 8B Course Outline as of Fall 2006

CATALOG INFORMATION

Dept and Nbr: MATH 8B Title: BRIEF CALCULUS 2 Full Title: Brief Calculus 2 Last Reviewed: 3/29/2010

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Continuation of Math 8A. Techniques of integration; probability and density functions; differential equations; partial derivatives; optimization with constraints; double integrals; applications; series and Taylor polynomials. The 8A/8B sequence constitutes a complete Brief Calculus course and is intended for students majoring in the life sciences or social sciences. Students will not receive credit for both Math 8B and Math 1B.

Prerequisites/Corequisites:

Completion of MATH 8A or higher (VF)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Continuation of Math 8A. Techniques of integration; probability and density functions; differential equations; partial derivatives; optimization with constraints; double integrals; applications; series and Taylor polynomials. For life or social science majors. Students will not receive credit for both Math 8B and Math 1B. (Grade Only)

Prerequisites/Corequisites: Completion of MATH 8A or higher (VF) Recommended: Limits on Enrollment: Transfer Credit: CSU;UC. (CAN MATH32)(MATH 8A+MATH 8B=MATH SEQ D) Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication and Analytical Thinking		Effective: Spring 1992	Inactive: Fall 2013
CSU CE.	MC Transfor Area	Math Competen	icy		Incotive
CSU GE:	B4	Math/Quantitative Reasoning		Fall 1992	Fall 2013
IGETC:	Transfer Area 2A	Mathematical C Quantitative Re	oncepts & asoning	Effective: Spring 2007	Inactive: Fall 2013
CSU Transfer:	Transferable	Effective:	Spring 1992	Inactive:	Fall 2013
UC Transfer:	Transferable	Effective:	Spring 1992	Inactive:	Fall 2013

CID:

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course, students will be able to:

- 1. Evaluate integrals using various methods of integration, including integration by parts, partial fractions and the use of tables or a computer algebra system.
- 2. Approximate definite integrals using numerical integration.
- 3. Compute variance and analyze probability density functions using integration and differentiation.
- 4. Determine partial derivatives of multivariable functions.
- 5. Analyze series with constant terms using convergence tests.
- 6. Compute and use Taylor polynomials and Taylor series for elementary functions.
- 7. Solve elementary differential equations, including separable and linear differential equations.

Topics and Scope:

Instructional methodology may include, but is not limited to: lecture, demonstrations, oral recitation, discussion, supervised practice, independent study, outside project or other assignments.

- I. L'Hopital's Rule
- II. The Integral

- A. Techniques of Integration for Algebraic and Trigonometric Functions
 - 1. Substitution
 - 2. Parts
 - 3. Tables
 - 4. Numerical Methods
- B. Improper Integrals
- C. Applications
 - 1. Area and Volume
 - 2. Average Value
 - 3. Present Value
- III. Probability and Density Functions
 - A. Continuous Random Variables
 - B. Expected Value
 - C. Variance
 - D. Probability Density Functions
- IV. Multivariable Calculus
 - A. Analytical Geometry in 3-D
 - B. Functions of Several Variables
 - C. Level Curves
 - D. Partial Differentiation
 - E. Optimization and Constrained Optimization
 - F. Double Integrals
 - G. Applications
- V. Sequences and Series
- A. Convergence and Tests
 - 1. P-series
 - 2. Ratio Test
 - B. Power Series
 - 1. Taylor's Theorem
 - 2. Taylor Polynomials
- C. Newton's Method
- VI. Differential Equations
 - A. Solutions to Differential Equations
 - B. Separation of Variables
 - C. First-order Linear Differential Equations
 - D. Applications

Assignment:

- 1. Daily reading outside of class (approximately 0-50 pages per week).
- 2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor.
- 3. Exams and quizzes.
- 4. Projects.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, Projects (eg, computer explor. or game analysis)

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Representative Textbooks and Materials:

Text(s) required of each student will be selected by the department, a committee of the department, or the responsible instructor from the books currently available. Among the choices could be: Brief Calculus With Applications (6th ed.). Larson, Ron; Hostetler, Robert; Edwards, Bruce. Houghton-Mifflin: 2003. Writing 0 - 0%

Problem solving 5 - 20%

Skill Demonstrations 0 - 0%

> Exams 70 - 95%

Other Category 0 - 10%