CATALOG INFORMATION

Dept and Nbr: MATH 57 Title: COL ALG AND TRIG
Full Title: College Algebra and Trigonometry
Last Reviewed: 3/14/2022

Units		Course Hours per Week	Nbr of Weeks			Course Hours Total
Maximum	5.00	Lecture Scheduled	5.00	17.5	Lecture Scheduled	87.50
Minimum	5.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
				Non-contact DHR	0	

Total Out of Class Hours: 175.00
Total Student Learning Hours: 262.50

Title 5 Category: AA Degree Applicable
Grading: Grade Only
Repeatability: $\quad 00$ - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:

Catalog Description:

Topics from college algebra and trigonometry, including analytic geometry, functions and their graphs, trigonometric functions of angles, trigonometric identities, trigonometric solution of triangles, complex numbers, vectors, sequences and series. Not open to those who have completed MATH 11 within the past 3 years with a grade of " C " or better.

Prerequisites/Corequisites:

MATH 155 or MATH 156 or high school intermediate algebra course with qualifying placement score.

Recommended Preparation:

That prerequisite courses have been taken within the last year. If a student's record shows a duplication of equivalent courses, the most recent course must satisfy the prerequisite.

Limits on Enrollment:

Schedule of Classes Information:

Description: College algebra and trigonometry topics, including analytic geometry, functions \& graphs, trigonometric functions of angles, trig identities, trig. solution of triangles, complex numbers, vectors, sequences and series. Not open to those who have completed MATH 11
within the past 3 years. (Grade Only)
Prerequisites/Corequisites: MATH 155 or MATH 156 or high school intermediate algebra course with qualifying placement score.
Recommended: That prerequisite courses have been taken within the last year. If a student's record shows a duplication of equivalent courses, the most recent course must satisfy the prerequisite.
Limits on Enrollment:
Transfer Credit: CSU;UC.
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B MC	Communication and Analytical Thinking		Effective: Fall 1981	Inactive:
CSU GE:	Transfer Area B4 B4	Math/Qua	ive Reasonin	Effective: Fall 1996 Fall 1981	Inactive:
IGETC:	Transfer Area 2A	Mathemat Quantitati	Concepts \& easoning	Effective: Fall 1998	Inactive:
CSU Transfer:	Transferable	Effective:	Fall 1981	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1998	Inactive:	
CID:					
Certificate/Ma Not Certificate/	jor Applicable: Major Applicab				

COURSE CONTENT

Outcomes and Objectives:

To be successful, students should be able to:

1. Perform advanced operations with functions (using symbolic, graphical, and numerical representations) and apply knowledge to modeling problems.
2. Define and graph inverse functions.
3. Solve algebraic equations over the complex numbers.
4. Define and apply characteristics of functions (including intercepts, turning points, intervals of positive/negative, increasing/decreasing value) in graphing polynomial, rational, algebraic, exponential, logarithmic, and trigonometric functions.
5. Solve algebraic and trigonometric equations graphically and symbolically.
6. Graph circles, functions, parametric representations, and polar functions using polar coordinates.
7. Apply trigonometric functions and identities to solve problems in mathematics and science.
8. Solve right and oblique triangles using the trigonometric functions and the laws of sines and cosines.
9. Use vectors to model applications in mathematics and science.
10. differentiate between an asymptote and a hole in the graph.

Topics and Scope:

INTRODUCTION TO ANALYTIC GEOMETRY
Symmetry, Distance formula, Equations of circles, Parametric equations, Systems of nonlinear equations and inequalities.
FUNCTIONS
Symbolic, graphical, and numerical representations,Operations and composition, Inverse functions, Modeling.
GRAPHS OF FUNCTIONS
Definition and characteristics, Horizontal and vertical shifts, scaling, Graphical solutions and numerical solutions of equations. CATALOG OF GRAPHS
Graphs of polynomial, rational, algebraic, exponential and logarithmic functions, Introduction to limit concepts and notation, Graphs of Inverse functions.
TRIGONOMETRIC FUNCTIONS
Definition, Characteristics of trigonometric functions, Radian measure, arc length ond area of a sector, Inverse trigonometric functions, Graphs.
IDENTITIES AND CONDITIONAL EQUATIONS
Fundamental identities, Sum and difference of angles and related identities, Trigonometric equations.
SOLUTIONS OF TRIANGLES
Right triangles, Oblique triangles, Laws of Sines and Cosines.
COMPLEX NUMBERS
Definitions and operations, Graphical representation, DeMoivre's Theorem.
VECTORS
Geometric and analytic definitions, Algebra of vectors.
SEQUENCES AND SERIES
Finite and infinite geometric sequences and series, Summation of powers of integers.

Assignment:

The student will have daily outside reading, problem set assignments from required text(s), or instructor chosen supplementary materials. Instructional methodology may include, but not limited to: lecture, demonstrations, oral recitation, discussion, supervised practice, independent study, outside project or other assignments.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments and skill demonstrations are more appropriate for this course.

Writing 0-0\%

Writing
$0-0 \%$

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Homework problems, Quizzes, Exams
Problem solving
25-50\%
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Performance exams
Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false
Other: Includes any assessment tools that do not logically fit into the above categories.

WRITING ASSIGNMENTS

Representative Textbooks and Materials:

Text(s) required of each student will be selected by the department, a committee of the department, or the responsible instructor from the books currently available. Choices could include:

Larson/Hostetler/Edwards, PRECALCULUS, D.C. Heath, 1994
Ruud/Shell, PRELUDE TO CALCULUS, PWS, 1993
Swokowski, FUNDAMENTALS OF ALGEBRA AND TRIGONOMETRY, 8th Ed., 1993
Kaufmann, COLLEGE ALGEBRA AND TRIGONOMETRY, 2nd Ed., 1990

