RENRG 106 Course Outline as of Fall 2024

CATALOG INFORMATION

Dept and Nbr: RENRG 106 Title: PV BATTERY STORAGE

Full Title: Photovoltaic Battery Storage System Specialty

Last Reviewed: 3/9/2020

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	2.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	2.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	2.00		Contact Total	35.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 105.00

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

This course will examine electrical energy storage systems for photovoltaic solar panel systems. Field trips may be included.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 100 OR EMLS 100 (formerly ESL 100) or equivalent

Limits on Enrollment:

Schedule of Classes Information:

Description: This course will examine electrical energy storage systems for photovoltaic solar panel systems. Field trips may be included. (Grade or P/NP)

Prerequisites/Corequisites:

Recommended: Eligibility for ENGL 100 OR EMLS 100 (formerly ESL 100) or equivalent

Limits on Enrollment:

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Effective: Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Discuss the benefits of adding battery storage to a homeowner's photovoltaic solar system.
- 2. Evaluate the effectiveness of battery storage for various home scenarios and backup options.
- 3. Determine electrical backup system requirements based on different battery technologies and anticipated electrical load demand and duration.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Size battery system capacity to a home's loads and backup needs.
- 2. Investigate how storage batteries integrate with solar photovoltaic systems to create microgrids.
- 3. Examine different battery vendors and evaluate the benefits and detriments of each technology.
- 4. Evaluate when to use generators with, or in place of, a battery storage system.

Topics and Scope:

- I. Grid Tied Battery Energy Storage
 - A. Grid tied battery storage system overview
 - B. Generators and battery storage comparison: benefits, costs, and limitations
 - C. Micro grid overview
 - D. Comparison of off-grid storage systems with grid tied storage system
 - E. Battery technologies used in residential use
 - F. Benefits of pairing battery storage with solar photovoltaic systems
 - G. Fuel-switching from gas to electricity and effects on battery storage
 - H. Battery storage manufacturers: benefits and limitations
 - I. Generators added to battery systems.
 - J. Electric vehicle-to-grid storage.
- II. Driving Forces for Residential Battery Storage Systems
 - A. Solar grid saturation
 - B. Reliability of electrical grid: PG&E public safety power shut-offs (PSPS)

- C. Increased frequency of major disaster events
- D. Changing utility rate schedules for solar-only systems
- E. Medical dependency situations
- F. Decentralization of electrical distribution grid benefits
- III. Sizing Residential Battery Storage Systems
 - A. Effects of electrical surges: motors and pumps
 - B. Protected Load Panels (PLP)
 - C. Load assignments for PLPs
 - D. Differences between city- and county-located properties differences and backup needs
 - E. Blending battery storage with generators
 - F. Extended outages battery sizing
 - G. Use of variable frequency drives for lowering electrical surge
 - H. Preparation of new residences for battery storage systems
 - I. Preparation of existing residences for battery storage systems
- IV. Justification of Residential Battery Storage Systems
 - A. Federal and local incentives
 - B. Favorable rate schedules
 - C. Utility usage charges
 - D. Designing for time of use
 - E. Losses from power outages
- V. Future and Emerging Technology
 - A. Residential storage as virtual power plants
 - B. Micro grids, nano grids, and communities
 - C. Battery technology developments
 - D. Electric car integration into residential energy storage
 - E. Other emerging technologies

Assignment:

- 1. Assigned reading (5-10 pages/week)
- 2. Problem solving assignments (5-10)
- 3. Weekly class discussions on advanced topics
- 4. Three- to five-page reports (5-10)
- 5. Midterm exam
- 6. Final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Reports

Writing 10 - 30%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Problem-solving assignments

Problem solving 25 - 35%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Midterm and final exam

Exams 20 - 30%

Other: Includes any assessment tools that do not logically fit into the above categories.

Active participation in class discussions

Other Category 15 - 30%

Representative Textbooks and Materials:

Instructor prepared materials