PHYS 42 Course Outline as of Fall 2023

CATALOG INFORMATION

Dept and Nbr: PHYS 42Title: ELECTRICITY & MAGNETISMFull Title: Electricity and Magnetism for Scientists and EngineersLast Reviewed: 9/26/2022

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	8	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	PHYS 4C

Catalog Description:

In this course, students will be introduced to electromagnetic phenomena; they will use calculus, algebra, and trigonometry to apply physics laws and principles into solving problems involving electromagnetism and circuits.

Prerequisites/Corequisites:

Completion of PHYS 40 or higher (V5) and Course Completion or Current Enrollment in MATH 1C

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: In this course, students will be introduced to electromagnetic phenomena; they will use calculus, algebra, and trigonometry to apply physics laws and principles into solving problems involving electromagnetism and circuits. (Grade Only) Prerequisites/Corequisites: Completion of PHYS 40 or higher (V5) and Course Completion or Current Enrollment in MATH 1C

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area C Transfer Area B1 B3	Physical Science Laboratory Activity		Effective: Fall 1983 Effective: Fall 1983	Inactive: Inactive:
IGETC:	Transfer Area 5A 5C			Effective: Fall 1983	Inactive:
CSU Transfer	:Transferable	Effective:	Fall 1983	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1983	Inactive:	

CID:

CID Descriptor:PHYS 200S
SRJC Equivalent Course(s):Calculus-Based Physics for Scientists and Engineers: ABC
PHYS40 AND PHYS41 AND PHYS42 AND PHYS43
Calculus-Based Physics for Scientists and Engineers: B
PHYS42SRJC Equivalent Course(s):PHYS42

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Apply laws of physics to analyze and solve problems related to electromagnetism and circuits.
- 2. Design and assemble apparatuses to measure electromagnetic phenomena.
- 3. Analyze and make meaningful comparisons between experiment and theory.
- 4. Effectively communicate principles and processes of electromagnetism and circuits.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Define and solve problems related to static electric fields and forces.
- 2. Use Gauss's law to solve problems involving charged conductors and insulators.

3. Define and calculate the electric potential for point charges and charged conductors and insulators.

- 4. Obtain the electric field from an electric potential.
- 5. Calculate the capacitance of capacitors with and without dielectrics.
- 6. Solve problems related to current, resistance, electrical power, and Ohm's law.
- 7. Use Kirchhoff's rules to analyze direct current (DC) circuits.
- 8. Define and solve problems related to the properties of magnetic fields and forces.
- 9. Use the Biot-Savart and Ampere's laws to calculate the magnetic field produced by currents.
- 10. Use Faraday's law of induction to calculate motional emf.

11. Analyze resistors, inductors and capacitors in alternating current (AC) circuits using equations and phasors.

- 12. Solve problems related to the design of transformers and power transmission.
- 13. Describe Maxwell's equations and the properties of electromagnetic waves.
- 14. Solve problems related to electromagnetic waves.

Lab Objectives:

 Develop and conduct experiments that apply the scientific method and error analysis to explore principles in static electricity, AC/DC circuits, electronic components, and magnetism.
Use manual and computerized data collection techniques to measure and analyze parameters related to electricity and magnetism.

3. Plot, curve fit, and interpret data using a spreadsheet or other analysis tools.

Topics and Scope:

- 1. Electric Field
 - A. Electric charges and field lines
 - B. Coulomb's law
 - C. Electric field of continuous charges
 - D. Motion of charged particle in electric field
- 2. Gauss's Law
 - A. Electric flux
 - B. Calculating electric field using the Gauss's law
 - C. Conductors in electrostatic fields
- 3. Electric Potential
 - A. Potential difference in a uniform electric field
 - B. Electric potential of point charge and charged conductor of various simple geometries
 - C. Finding electric field from electric potential
- 4. Dielectrics
 - A. Capacitances
 - B. Combinations of capacitances
 - C. Energy stored in capacitors
 - D. Electric dipole
- 5. Current and Resistance
 - A. Electric current and resistance
 - B. Effect of temperature on resistivity
 - C. Conductivity and resistivity
 - D. Electrical power
- 6. DC Circuits
 - A. Batteries and emf
 - B. Resistors in series and parallel
 - C. Kirchhoff's rules
 - D. RC circuits
- 7. Magnetic Field
 - A. Magnetic force on a moving charge and its applications
 - B. Magnetic force on a current carrying conductor
 - C. Torque on a current loop in a uniform magnetic field
 - D. Hall effect
- 8. Sources of Magnetic Field
 - A. Biot-Savart law
 - B. Ampere's law
 - C. Magnetic field of currents flowing in straight wires, solenoid, toroid, and sheets

- D. Gauss's law in magnetism
- E. Magnetic materials and magnetic field of the Earth
- 9. Faraday's Law
 - A. Motional emf
 - B. Lenz's law
 - C. Induced emf, generators and motors
 - D. Eddy current
- 10. Inductance
 - A. Self inductance, inductors, and mutual inductance
 - B. RL circuits
 - C. Stored energy in a magnetic field
 - D. Oscillation in LC and RLC circuits
- 11. AC Circuits
 - A. Resistors, inductors, and capacitors in AC circuits
 - B. Phasors
 - C. Series RLC circuit
 - D. Power in AC circuits
 - E. Transformers and power transmission
- 12. Electromagnetic Waves
 - A. Poynting's vector
 - B. Maxwell's equations
 - C. Plane electromagnetic waves
 - D. Polarization of light
 - E. Energy carried and pressure exerted by electromagnetic waves
 - F. Electromagnetic spectrum

All topics are covered in both the lecture and lab parts of the course.

Assignment:

Lecture-Related Assignments:

- 1. Homework problem sets (10-30)
- 2. Quizzes (5-15)
- 3. Exams (2-4)
- 4. Final exam

Lab- and Lecture-Related Assignments:

1. Laboratory experiments and reports (12-16)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

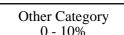
Written lab reports

Writing 5 - 20%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problem sets; Laboratory experiments

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.


None

Exams: All forms of formal testing, other than skill performance exams.

Quizzes, exams, final

Other: Includes any assessment tools that do not logically fit into the above categories.

Participation and attendance

Representative Textbooks and Materials:

Representative Textbooks:

Physics For Scientists And Engineers. 10th ed. Serway, Raymond and Jewett, John. Cengage L. 2018.

Physics For Scientists and Engineers: A Strategic Approach With Modern Physics. 4th ed. Randall Knight. 2016. (classic)

University Physics Volume 2 by OpenStax, S. J. Ling, J. Sanny, and W. Moebs, 2016. (classic)

Online Educational Resources (OER):

University Physics, Volume 1, Moebs, William et

al. https://openstax.org/details/books/university-physics-volume-1 Creative Commons Attribution License v4.0.

University Physics, Volume 2. Ling, Samuel J., et

al. https://openstax.org/details/books/university-physics-volume-2 Creative Commons Attribution License v4.0.

University Physics Volume 3. Ling, Sameul J., et

al. https://openstax.org/details/books/university-physics-volume-3 Creative Commons Attribution License v4.0.

Problem solving 10 - 30%

Skill Demonstrations 0 - 0%

> Exams 40 - 70%

0 - 10%