PHIL 4 Course Outline as of Summer 2022

CATALOG INFORMATION

Title: INTRO SYMBOLIC LOGIC Dept and Nbr: PHIL 4 Full Title: Introduction to Symbolic Logic Last Reviewed: 4/12/2021

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

This class focuses on the development of modern symbolic logic through first-order predicate logic plus identity, with an emphasis on translation and proof techniques. It provides a basis for understanding recent analytic trends.

Prerequisites/Corequisites:

Recommended Preparation:

Concurrent enrollment or completion of ENGL 100 or ESL 100; AND Concurrent enrollment or completion of MATH 150A or MATH 150.

Limits on Enrollment:

Schedule of Classes Information:

Description: This class focuses on the development of modern symbolic logic through first-order predicate logic plus identity, with an emphasis on translation and proof techniques. It provides a basis for understanding recent analytic trends. (Grade or P/NP) Prerequisites/Corequisites:

Recommended: Concurrent enrollment or completion of ENGL 100 or ESL 100; AND

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication and Analytical Thinking		Effective: Fall 1981	Inactive:
CSU GE:	Transfer Area			Effective:	Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer:	Transferable	Effective:	Fall 1981	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1981	Inactive:	
CID:					

CID Descriptor:PHIL 210	Symbolic Logic
SRJC Equivalent Course(s):	PHIL4

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Reduce complex English sentences into the simpler component parts.
- 2. Translate typical English connectives.
- 3. Perform valid proofs for valid arguments using the statement logic.
- 4. Perform valid proofs in the predicate logic using four additional quantifier rules as extension of the statement logic.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Distinguish arguments from non-arguments in ordinary language.
- 2. Examine ordinary statements for ambiguity, equivocation and clarity.
- 3. Generate translations from ordinary language into symbolic notations.
- 4. Distinguish valid from invalid argument forms.
- 5. Analyze complex expression into simple forms.
- 6. Determine truth values for complex expressions.
- 7. Deduce valid conclusions using proof strategies and rules.
- 8. Develop first-order predicate logic as an attempt to provide a method of analysis and as a possible foundation for mathematics.
- 9. Evaluate recent analytic philosophical positions using symbolic notations.
- 10. Describe the relation between modern symbolic notations and other formal systems, for example, computer languages.
- 11. Trace the historical development of modern symbolic logic and show the attempt to base mathematics on the foundation of the extended predicate logic.
- 12. Translate English statements with "or" "and" "if, then" "not" into the statement logic

notation.

Topics and Scope:

- I. The Nature of Logic, Arguments, and Deduction
- II. Ordinary Language, the Components of Sentences, and Symbolic Notation
- III. Statement Logic and Well-Formed Expressions
- IV. Proof Development
 - A. Truth Table Construction
 - B. Truth Table Analysis for Arguments and Complex Expressions
 - C. Truth Trees
 - D. Rules of Natural Deduction
- V. Predicate Logic
- VI. Translation into Quantified Expressions
- VII. Quantification Rules
- VIII. Identity Theory
- IX. Modern Formal Systems
- X. Identify Ambiguous and Equivocal Statements

Other topics may include:

XIV. The Relation between Logic and Computer Systems

Assignment:

- 1. Read approximately 50 pages of text per week
- 2. Complete weekly chapter end problems
- 3. Demonstrate problem solving skills, including demonstrations and proofs, in small group class discussion on a weekly basis
- 4. Problem-solving exams (2-5)
- 5. Weekly in-class quizzes
- 6. Final exam
- 7. Additional assignments may include: Individual problem-solving presentation

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, in-class demonstrations and proofs, problem solving presentation(s)

Probl	lem	so	lving
	0 - 7		

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Quizzes, problem solving exams, Final

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Representative	Textbooks	and Materials	3:

Introduction to Logic. 15th ed. Copi, Irving. Prentice Hall. 2019

Introduction to Logic. 3rd ed. Gensler, Harry. Routledge. 2016 (classic)

A Concise Introduction to Logic. 12th ed. Hurley, Patrick J. Wadsworth Publishing. 2014 (classic)

The Logic Book. 6th ed. Bergmann, Merrie. McGraw Hill. 2013 (classic)

Logic: The Laws of Truth. Smith, Nicholas JJ. Princeton University Press. 2012 (classic)

Language Proof and Logic. Barwise, Jon and Etchemendy, John. University of Chicago Press. 2011 (classic)

Formal Logic: Its Scope and Limits. 4th ed. Jeffrey, Richard. Hackett Publishing Co. 2006 (classic)

Modern Logic: A Text in Elementary Symbolic Logic. Forbes, Graeme. Oxford University Press. 1994 (classic)

Skill Demonstrations 0 - 0%

Exams 30 - 60%	

Other Category 0 - 0%