CS 81.62 Course Outline as of Fall 2022

CATALOG INFORMATION

Dept and Nbr: CS 81.62 Title: SQL/RELATIONAL DATABASES Full Title: Relational Database Concepts and Structured Query Language

Last Reviewed: 2/28/2022

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	4	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Introduces students to relational database concepts, design and administration. Students will learn the syntax and use of Structured Query Language (SQL); how to install and run a relational database server such as MySQL; as well as how to design a relational database for applications.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: Introduces students to relational database concepts, design and administration. Students will learn the syntax and use of Structured Query Language (SQL); how to install and run a relational database server such as MySQL; as well as how to design a relational database for applications. (Grade or P/NP)

Prerequisites/Corequisites:

Recommended: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment: Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 2011 Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Write Structured Query Language (SQL) statements, including Data Definition Language (DDL) queries and Data Manipulation Language (DML)
- 2. Design and develop a relational database

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Describe a relational database
- 2. Install and configure a database server environment
- 3. Implement SQL statements using data design, definition, and manipulation techniques
- 4. Implement stored procedures
- 5. Develop complex data analysis queries in SQL
- 6. Apply transaction and database administration concepts
- 7. Define and manage access controls for relational databases

Topics and Scope:

- 1. Definition of "relational database"
 - a. Contrast relational database and file-based databases
 - b. History of relational database theory
 - c. Client/server computing
 - d. History and current options in the database market
 - e. MySQL, the SQL language, and understanding tables
- 2. Database server set-up
 - a. Installing and configuring MySQL
 - b. Storage engines Index Sequential Access Method (ISAM) and Inno Database (InnoDB)
- 3. SQL basics: Syntax, Data Manipulation Language (DML), Data Definition Language (DDL), tables, select, distinct, where, and/or, order by, query and reporting in SQL

- 4. Data design
 - a. Data normalization theory
 - b. Primary key and foreign keys
 - c. Entity and relationship diagramming
- 5. Data definition
 - a. Create database, create table and create index
 - b. Synonyms, views, stored procedures
- 6. Data manipulation: insert, update and delete
- 7. Stored procedures: programming in the database
- 8. Data analysis: SQL functions, unions, group by, and complex joins
- 9. Web data analysis: creating data analysis web applications using Python
- 10. Transactions: theory and practice for simple and distributed transactions using SQL
- 11. Database administration: partitioning, replication, enterprise management tools, backup and recovery
- 12. Security concepts of relational databases
 - a. User management
 - b. Access controls
 - c. Data integrity

Assignment:

- 1. Approximately 25 pages per week of reading
- 2. 8 12 SQL problem solving projects
- 3. 3 5 exams

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

SQL problem solving projects

Problem solving 50 - 70%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

3 - 5 exams

Exams 30 - 50%

Other: Includes any assessment tools that do not logically fit into the above categories.

Participation and attendance	Other Category 0 - 10%	cipation and attendance
------------------------------	---------------------------	-------------------------

Representative Textbooks and Materials:
Database Systems: A Practical Approach to Design, Implementation, and Management (6th).
Connolly, Thomas and Begg, Carolyn. Pearson: 2015 (classic)