NRM 88 Course Outline as of Fall 2021

CATALOG INFORMATION

Dept and Nbr: NRM 88 Title: WATRSHD ECOL/RESTORATION

Full Title: Watershed Ecology and Restoration

Last Reviewed: 1/25/2021

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	8	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: NRM 280.25

Catalog Description:

An introduction to watershed restoration ecology methods, techniques, and tools used to restore and enhance watershed health.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100 or appropriate placement based on AB705 mandates

Limits on Enrollment:

Schedule of Classes Information:

Description: An introduction to watershed restoration ecology methods, techniques, and tools used to restore and enhance watershed health. (Grade or P/NP)

Prerequisites/Corequisites:

Recommended: Eligibility for ENGL 100 or ESL 100 or appropriate placement based on AB705

mandates

Limits on Enrollment: Transfer Credit: CSU; Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 2003 Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Analyze and explain physical and biological processes of watershed health.
- 2. Determine the economic need for restoring and maintaining watershed health.
- 3. Evaluate completed and planned restoration projects and apply prescriptions for repair and sediment reduction.
- 4. Identify impacts and recommend preventative measures, restoration treatments and Best Management Practices (BMP).

Objectives:

Students will be able to:

- 1. Define how ecosystems function over space and time, including ecosystem processes and how they vary within a natural window of variability.
- 2. Discuss physical and biological processes that affect watershed health and function.
- 3. Identify the biologic and socio-economic need for restoring and maintaining watershed health in California.
- 4. Identify topographical maps, assessments and hand tools and equipment used by watershed restorationists.
- 5. Demonstrate an understanding of streambank repair, riparian habitat assessment, and watershed restoration techniques.
- 6. Compare and contrast local watersheds, and discuss land use impacts (both perceived and real) relative to cause and effect.
- 7. Evaluate the success of local restoration projects.
- 8. Analyze and discuss important water issues in California.
- 9. Familiarity with broad areas of ecological theory that are foundational to the science of restoration ecology.

Topics and Scope:

- I. Ecological Theory
 - A. Ecosystem function and variability

- B. Physical and biological factors influencing watershed health
- C. Socio-economic importance of watersheds
- D. Principles and practices of restoration ecology
- II. Local Watershed Issues in California
 - A. Overview of local water issues in California: past, present, future
 - B. Assessment of watershed dynamics
 - C. Mapping and assessment of local watershed restoration projects

III. Watershed Restoration Ecology

- A. Conceptual framework of healthy and impaired watershed processes
- B. Watershed impacts and function relative to local and regional and use practices
- C. Restoration tool box
- D. Sale, timing and cost/benefit
- E. Best Management Practices (BMP)
 - 1. Low impact development
 - 2. Slow it, spread it, sink it
 - 3. Rainwater harvesting
 - 4. Water conservation

IV. Restoration Project Planning

- A. Fishery restoration techniques, methods, and tools
- B. Riparian corridor restoration: planning, appropriate species, location, scheduling
- C. Upslope restoration: grasslands, woodlands, wetlands, intermittent streams, erosion control
- D. Invasive species: issues and problems related to maintenance of restoration projects
- V. Restoration of Aquatic Habitats
- A. Identification of land use impacts and innovative solutions for restoring functional processes
 - B. Recreating riffle-pool-flatwaters, increasing pool volume, spawning and rearing habitat
- C. Survey of local restoration techniques, including successes and failures, relative to stream channel function
- VI. Riparian Restoration
 - A. Successful native plant revegetation
 - B. Methods for controlling invasive species
 - C. Pierce's Disease and riparian corridors and stream/agricultural interface

Concepts presented in lecture are applied and practiced in lab.

Assignment:

Lecture Related Assignments:

- 1. Weekly reading assignments (20-30 pages)
- 2. One to two group oral presentation on land use and impacts on watersheds (15 minutes)
- 3. One term paper (2-3 pages)
- 4. One final exam

Lab Related Assignments:

- 1. Weekly lab activity
- 2. Two to three lab group projects (e.g. topo maps, sediment measuring techniques)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Term paper Writing 20 - 30%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

None

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Lab group projects, oral presentation, weekly lab activity

Skill Demonstrations 30 - 40%

Problem solving

0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Final exam Exams 30 - 40%

Other: Includes any assessment tools that do not logically fit into the above categories.

None Other Category 0 - 0%

Representative Textbooks and Materials:

California Salmonid Stream Habitat Restoration Manual. 3rd ed. Flosi, Gray and Downie, Scott and Hopelain, James. State of California, Department of Fish and Game. 1998 (classic) Stream Corridor Restoration: Principles, Processes & Practices. Federal Stream Interagency Work Group. 1997 (classic) Instructor prepared materials