MUSC 50 Course Outline as of Fall 2021

CATALOG INFORMATION

Dept and Nbr: MUSC 50 Title: INTRO MUSIC TECHNOLOGY Full Title: Introduction to Music Technology Last Reviewed: 11/9/2020

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	2.00	8	Lab Scheduled	35.00
		Contact DHR	1.00		Contact DHR	17.50
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

This introductory course examines the concepts, terminology, techniques, and equipment related to music technology. Students will receive a solid foundation in the principles of sound, MIDI, synthesis, digital recording, and computer-based music notation, as well as hands-on experience with state-of-the-art industry hardware and software. Designed for students with an interest in composition, songwriting, digital audio, and/or multimedia.

Prerequisites/Corequisites:

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: This introductory course examines the concepts, terminology, techniques, and equipment related to music technology. Students will receive a solid foundation in the principles of sound, MIDI, synthesis, digital recording, and computer-based music notation, as well as hands-on experience with state-of-the-art industry hardware and software. Designed for students

with an interest in composition, songwriting, digital audio, and/or multimedia. (Grade Only) Prerequisites/Corequisites: Recommended: Limits on Enrollment: Transfer Credit: CSU; Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	ı		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	l		Effective:	Inactive:
CSU Transfer	:Transferable	Effective:	Fall 2009	Inactive:	
UC Transfer:		Effective:		Inactive:	
CID:					

CID Descriptor:CMUS 100X Introduction to Music Technology SRJC Equivalent Course(s): MUSC50

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

1. Describe and explain the fundamental concepts, terminology, techniques, and equipment related to music technology.

2. Apply a working knowledge of MIDI sequencing, digital recording, and synthesis to produce projects on a Digital Audio Workstation.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Explain the fundamentals of sound including waveforms, frequency, amplitude, phase, and harmonics.
- 2. Demonstrate a conceptual and understanding of and working proficiency with MIDI hardware, software, and sequencing.
- 3. Explain the fundamentals of synthesis techniques such as subtractive, additive, frequency modulation (FM), and wavetable.
- 4. Describe the theory and applications of digital sampling and recording.
- 5. Describe the elements and techniques of computer-based music notation.

Topics and Scope:

Lecture Topics:

- I. Sound and Hearing
 - A. The basics of sound and sound waves
 - 1. Frequency

- 2. Amplitude
- 3. Phase and phase shift
- 4. Harmonic content (timbre)
- 5. The sound envelope (ADSR)
- B. Loudness levels: The Decibel (dB)
- C. The ear and human hearing
 - 1. Thresholds of hearing, feeling, and pain
 - 2. Taking care of your hearing
 - 3. Psycho-acoustics
- D. Auditory perception
 - 1. Beats
 - 2. Combination tones
 - 3. Masking
 - 4. Perception of direction
 - 5. Perception of space (reflection and reverberation)
- II. Introduction to the Musical Instrument Digital Interface (MIDI)
 - A. The MIDI specification
 - B. MIDI devices
 - C. MIDI channels
 - D. Signal flow
 - E. Channel and system messages
 - F. Global functions
 - G. The General MIDI (GM) specifications
- III. Introduction to Digital Sampling and Recording
 - A. Digital Audio Workstations (DAWs)
 - B. Technologies and formats
 - C. Quantization
 - D. Sample rate
 - E. Bit depth
 - F. The Nyquist theorem
 - G. Dither
- IV. Sequencing with a Digital Audio Workstation
 - A. The basics
 - 1. Starting a new project & saving
 - 2. Audio & MIDI tracks
 - a. Record/play/mute/solo
 - b. Softsynths (instruments)
 - B. Recording modes
 - C. Converting audio to MIDI
 - D. Work flow schemes: freezing & resampling
 - E. Elastic Audio: warping
 - F. Working with grooves
 - G. Effects processing
- V. Introduction to Synthesis
 - A. Analog (subtractive) synthesis
 - 1. Three elements of sound: pitch, timbre, and amplitude
 - 2. Voltage-Controlled Oscillators (VCOs): pitch
 - 3. Basic waveforms
 - 4. Filters (timbre)
 - 5. Amplifiers (amplitude)
 - 6. Modifiers
 - a. Envelopes

b. Low Frequency Oscillator (LFO)

- B. Frequency Modulation (FM) synthesis
 - 1. Carriers
 - 2. Modulators
- C. Wavetable synthesis
- D. Controlling synth parameters within a DAW
- VI. Introduction to computer-based music notation
 - A. Computer notation basics
 - B. DAW score windows
 - C. Major platforms: Finale, Sibelius, MuseScore

Laboratory Topics:

- I. Beginning-level usage of a Digital Audio Workstation (DAW)
- II. MIDI sequencing, sampling, and/or other digital recording applications
- III. Basics of computer-based notation
- IV. Individual projects

Assignment:

- 1. Reading (10-20 pp. per week) from the text, handouts, and/or online tutorials
- 2. Weekly projects and classroom discussions
- 3. Quiz(zes) (1-3) on course topics (multiple choice/short answer/essay as needed)
- 4. Completion of required laboratory hours
- 5. Comprehensive final exam and/or final project designed in consultation with the instructor
- 6. Hands-on proficiency demonstrations

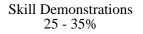
Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments and skill demonstrations are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Class project(s)


Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Hands-on proficiency demonstrations

Exams: All forms of formal testing, other than skill performance exams.

Writing 0 - 0%	

Problem solving	
40 - 55%	

Quizzes and exams

Other: Includes any assessment tools that do not logically fit into the above categories.

Attendance and participation, lab hours

Representative Textbooks and Materials:

An Introduction to Music Technology. 3rd ed. Hosken, Dan. Routledge. 2020

Online tutorials: Groove3.com (all-access pass)

Instructor prepared materials.

Ex	ams
10 -	25%

Other Category 5 - 10%