PHYS 41 Course Outline as of Fall 2019

CATALOG INFORMATION

Dept and Nbr: PHYS 41 Title: WAVES, OPTICS, THERMO

Full Title: Waves, Optics and Thermodynamics for Scientists & Engineers

Last Reviewed: 1/23/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 210.00

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: PHYS 4B

Catalog Description:

This is a course intended for science and engineering students and will include oscillations, waves, sound, heat, kinetic theory, thermodynamics, geometrical optics, interference, diffraction and polarization of light.

Prerequisites/Corequisites:

Course Completion of PHYS 40 and MATH 1B

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: This is a course intended for science and engineering students and will include oscillations, waves, sound, heat, kinetic theory, thermodynamics, geometrical optics,

interference, diffraction and polarization of light. (Grade Only)

Prerequisites/Corequisites: Course Completion of PHYS 40 and MATH 1B

Recommended:

Limits on Enrollment:

Transfer Credit: CSU;UC.

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

C Natural Sciences Spring 1983

CSU GE: Transfer Area Effective: Inactive:

B1 Physical Science Spring 1983

B3 Laboratory Activity

IGETC: Transfer Area Effective: Inactive:

5A Physical Sciences Spring 1983

5C Fulfills Lab Requirement

CSU Transfer: Transferable Effective: Spring 1983 Inactive:

UC Transfer: Transferable Effective: Spring 1983 Inactive:

CID:

CID Descriptor: PHYS 200S Calculus-Based Physics for Scientists and Engineers: ABC SRJC Equivalent Course(s): PHYS40 AND PHYS41 AND PHYS42 AND PHYS43

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Apply laws of physics to analyze and solve problems related to oscillatory motions, wave propagation and interferences including sound, laws of thermodynamics and geometrical/wave optics.
- 2. Design and assemble apparati to measure physical phenomena.
- 3. Analyze and make comparisons between experiment and theory.
- 4. Effectively communicate ideas and processes of physics.

Objectives:

During the course, students will:

- 1. Describe waves and solve problems relating to their properties and propagation in various media.
- 2. Be able to convert between temperature scales, solve problems related to coefficient of expansion, thermal equilibrium and heat transfer.
- 3. Use the laws of thermodynamics and the kinetic theory of gases to solve problems related to ideal gases and various heat engines.
- 4. Explain propagation of light in media including reflection, refraction and dispersion.
- 5. Explain image formation and draw the ray diagrams for various optical devices including lenses, mirrors, microscopes and telescopes.
- 6. Explain the formation of interference patterns of light from a single slit, a double slit, a diffraction grating, and thin films.
- 7. Describe polarization with filters and by reflection.

Lab Objectives:

- 1. Develop and conduct experiments that apply the scientific method and error analysis to explore principles in waves, sound, thermodynamics and optics.
- 2. Use manual and computerized data collection techniques to measure and analyze parameters related to waves, sound, thermodynamics, and optics.
- 3. Plot, curve fit, and interpret data using a spreadsheet or other analysis tools.

Topics and Scope:

- I. Oscillatory Motion
 - A. Simple harmonic motion
 - B. Wave equations
 - C. Damped/forced oscillations
- II. Wave Motion Travelling Wave Model/Equation
- III. Sound Waves
 - A. Speed, frequency, power level and intensity
 - B. Doppler effect
- IV. Superposition and Standing Waves
 - A. Equations
 - B. Interference and standing waves
 - C. Beats
- V. Temperature and Zeroth Law of Thermodynamics
 - A. Temperature scales
 - B. Thermal expansion
 - C. Ideal gas
- VI. First Law of Thermodynamics
 - A. Heat and thermal energy
 - B. Specific heat and latent heat
 - C. Work-heat relationship
 - D. Thermal transfer methods
- VII. The Kinetic Theory of Gases
 - A. Molecular and statistical models
 - B. Molar specific heat of gas
 - C. Thermal processes
 - D. Equipartition theorem
- VIII. Second Law of Thermodynamics
 - A. Heat engines
 - B. Entropy
- IX. Light and Optics
 - A. Nature of light
 - B. Reflection and refraction of light
 - C. Total internal reflection
- X. Image Formation
 - A. Mirrors and lenses
 - B. Ray diagrams
 - C. Optical instruments including eye, camera, microscope, telescopes
- XI. Interference of Light Waves
 - A. Single and double slits
 - B. Thin film interference
 - C. Interferometers
- XII. Diffraction
 - A. Narrow single slit

- B. Double slits
- C. Diffraction gratings

All topics are covered in both the lecture and lab parts of the course.

Assignment:

Lecture-Related Assignments:

- 1. Homework problem sets (10-30)
- 2. Quizzes (5-15)
- 3. Mid-term exams (2-4)
- 4. Final exam
- 5. Written lab reports (12-16)

Lab-Related Assignments:

1. Laboratory experiments (12-16)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written lab reports

Writing 5 - 10%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, lab experiments

Problem solving 15 - 35%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Objective examinations (multiple choice, etc.) that include essay questions, Quizzes, Mid-terms, Final exam

Exams 50 - 70%

Other: Includes any assessment tools that do not logically fit into the above categories.

Class participation

Other Category 0 - 5%

Representative Textbooks and Materials:

Physics for Scientists and Engineers. 10th ed. Serway, Raymond and Jewett, John. Cengage L. 2019

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics. 4th ed. Knight, Randell. Pearson. 2017