MATH 1B Course Outline as of Summer 2019

CATALOG INFORMATION

Dept and Nbr: MATH 1B Title: CALCULUS 2

Full Title: Calculus, Second Course

Last Reviewed: 9/14/2020

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	5.00	Lecture Scheduled	5.00	17.5	Lecture Scheduled	87.50
Minimum	5.00	Lab Scheduled	0	8	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 175.00 Total Student Learning Hours: 262.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Topics include methods of integration, conic sections, polar coordinates, infinite sequences and series, parametric equations, solid analytic geometry, and vectors.

Prerequisites/Corequisites:

Completion of MATH 1A or higher (MATH)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Topics include methods of integration, conic sections, polar coordinates, infinite sequences and series, parametric equations, solid analytic geometry, and vectors. (Grade Only)

Prerequisites/Corequisites: Completion of MATH 1A or higher (MATH)

Recommended:

Limits on Enrollment: Transfer Credit: CSU;UC.

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

B Communication and Analytical Fall 1981

Thinking

MC Math Competency

CSU GE: Transfer Area Effective: Inactive:

B4 Math/Quantitative Reasoning Fall 1981

IGETC: Transfer Area Effective: Inactive:

2A Mathematical Concepts & Fall 1981

Quantitative Reasoning

CSU Transfer: Transferable Effective: Fall 1981 Inactive:

UC Transfer: Transferable Effective: Fall 1981 Inactive:

CID:

CID Descriptor: MATH 900S Single Variable Calculus Sequence

SRJC Equivalent Course(s): MATH1A AND MATH1B CID Descriptor:MATH 230 Multivariable Calculus SRJC Equivalent Course(s): MATH1B AND MATH1C

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Evaluate proper and improper integrals.
- 2. Define and apply topics from plane analytic geometry including polar and parametrically defined graphs, conic sections, and vectors.
- 3. Define and apply topics from solid analytic geometry including quadric surfaces, lines and planes in space, and vectors.
- 4. Determine convergence of sequences and series, and compute and use power series of elementary functions.

Objectives:

Upon completion of the course, students will be able to:

- 1. Apply methods of integration, including integration by parts, integrals of inverse functions, trigonometric substitutions and partial fractions, to calculate proper and improper integrals.
- 2. Define and discuss conic sections as equations, as geometric intersections and as loci.
- 3. Apply differentiation and integration to parametric representations of graphs, including polar graphs.
- 4. Use three dimensional rectangular coordinates.
- 5. Determine convergence of sequences and series.
- 6. Compute power series of functions, their derivatives and integrals.
- 7. Compute Taylor and Maclaurin series and demonstrate applications to elementary functions.
- 8. Determine radii and intervals of convergence of power series.
- 9. Compute and use determinants, dot products, cross products, and projections.

- 10. Determine lines and planes in space.
- 11. Describe velocity and acceleration of particles in the plane and in space using vector functions.

Topics and Scope:

- I. Integration
 - A. Integration by parts
 - B. Integration of inverse functions
 - C. Trigonometric integrals
 - D. Trigonometric substitutions
 - E. Partial fractions
 - F. Improper integrals
 - G. Area of surfaces of revolution
- II. Topics From Plane Analytic Geometry
 - A. Conic sections
 - B. Polar coordinates and graphs
- III. Infinite Series
 - A. Sequences and series
 - B. Convergence tests
 - C. Power series
 - D. Radii and intervals of convergence
 - E. Taylor polynomials and approximations
 - F. Derivatives and integrals of power series
 - G. Taylor and Maclaurin series
- IV. Parametric Equations
 - A. Tangents, arc length and areas
 - B. Tangents and area for polar graphs
- V. Topics from Solid Analytic Geometry
 - A. Rectangular coordinate system
 - B. Quadric surfaces
- VI. Vectors
 - A. Vectors in the plane and in space
 - B. Determinants
 - C. Dot and cross products
 - D. Projections
 - E. Lines and planes in space
 - F. Differentiation and integration of vector valued functions
 - G. Velocity and acceleration
 - H. Tangent and normal vectors
 - I. Curvature

Assignment:

- 1. Daily reading outside of class (20-50 pages per week).
- 2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor (1-6 per week).
- 3. Quizzes (0-4 per week).
- 4. Exams (3-8 per term).
- 5. Projects, for example, computer explorations or modeling activities, (0-10 per term.)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Problem solving 5 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice and free response exams; quizzes

Exams 70 - 95%

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Other Category 0 - 10%

Representative Textbooks and Materials:

Calculus: Early Transcendentals, 7 th edition. Stewart, James. Brooks/Cole, Cengage

Learning: 2012.