#### MICRO 5 Course Outline as of Fall 2018

## **CATALOG INFORMATION**

Dept and Nbr: MICRO 5 Title: GENERAL MICROBIOLOGY

Full Title: General Microbiology

Last Reviewed: 8/14/2023

| Units   |      | Course Hours per Week |      | Nbr of Weeks | <b>Course Hours Total</b> |        |
|---------|------|-----------------------|------|--------------|---------------------------|--------|
| Maximum | 5.00 | Lecture Scheduled     | 3.00 | 17.5         | Lecture Scheduled         | 52.50  |
| Minimum | 5.00 | Lab Scheduled         | 6.00 | 6            | Lab Scheduled             | 105.00 |
|         |      | Contact DHR           | 0    |              | Contact DHR               | 0      |
|         |      | Contact Total         | 9.00 |              | Contact Total             | 157.50 |
|         |      | Non-contact DHR       | 0    |              | Non-contact DHR           | 0      |

Total Out of Class Hours: 105.00 Total Student Learning Hours: 262.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

### **Catalog Description:**

Course covers the morphology, growth, metabolism, genetics, and control of microorganisms, with emphasis on bacteria and viruses. Includes principles of microbial pathogenicity, and the human immune response. Emphasis on laboratory techniques. Intended for allied health majors considering transfer to CSU or UC.

### **Prerequisites/Corequisites:**

Course completion of ENGL 1A; AND Completion of BIO 10 or higher (V7); AND Completion of CHEM 60 OR completion of CHEM 1A or higher (V6)

### **Recommended Preparation:**

#### **Limits on Enrollment:**

### **Schedule of Classes Information:**

Description: Course covers the morphology, growth, metabolism, genetics, and control of microorganisms, with emphasis on bacteria and viruses. Includes principles of microbial pathogenicity, and the human immune response. Emphasis on laboratory techniques. Intended

for allied health majors considering transfer to CSU or UC. (Grade Only)

Prerequisites/Corequisites: Course completion of ENGL 1A; AND

Completion of BIO 10 or higher (V7); AND

Completion of CHEM 60 OR completion of CHEM 1A or higher (V6)

Recommended:

Limits on Enrollment: Transfer Credit: CSU;UC.

Repeatability: Two Repeats if Grade was D, F, NC, or NP

# **ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:**

AS Degree: Area Effective: Inactive:

C Natural Sciences Fall 1981

CSU GE: Transfer Area Effective: Inactive:

B2 Life Science Fall 1981 B3 Laboratory Activity

B3 Laboratory Activity

**IGETC:** Transfer Area Effective: Inactive:

5B Biological Sciences Fall 1981

5C Fulfills Lab Requirement

**CSU Transfer:** Transferable Effective: Fall 1981 Inactive:

**UC Transfer:** Transferable Effective: Fall 1981 Inactive:

CID:

# **Certificate/Major Applicable:**

Major Applicable Course

## **COURSE CONTENT**

# **Student Learning Outcomes:**

At the conclusion of this course, the student should be able to:

- 1. Integrate basic principles of microbial cell structures and processes with evolutionary and ecological concepts.
- 2. Explain the impact of microbiology on medical, public health and environmental concerns.
- 3. Demonstrate proficiency in a variety of standard laboratory techniques used for the routine culture, analysis and identification of microorganisms.

# **Objectives:**

In order to achieve these learning outcomes, during the course the students will:

- 1. Outline the history of major microbiological discoveries and describe their contributions to world civilization.
- 2. State Koch's postulates and apply them to different types of pathogens and to new diseases.
- 3. Relate basic principles of chemistry and cell biology to structure and function of microbes.
- 4. Explain how the unity of basic cell processes contributes to difficulties in treating infectious disease.
- 5. Describe the principles and mechanisms of microbial genetics and coevolution and apply them to the problem of increasing drug resistance in microorganisms.
- 6. Describe viruses and their relation to cells.
- 7. Compare and evaluate the various mechanisms of control and prevention of microbial disease.

- 8. Discuss the mechanisms of pathogenicity in microbes.
- 9. Compare and contrast the epidemiology of community acquired and hospital acquired infections.
- 10. Describe the functions of the human immune system, its relations to disease, and how vaccination contributes to immunity.
- 11. Describe the etiology, epidemiology, treatment and prevention of a variety of important infectious diseases.
- 12. Safely and aseptically perform a variety of microbiological laboratory techniques.
- 13. Collect and analyze data.

## **Topics and Scope:**

- I. Historical development
  - A. Discovery of the microbial world and development of the microscope
  - B. Spontaneous generation vs. biogenesis
  - C. Koch's postulates
  - D. Contribution of microbiology to biochemistry and molecular biology
  - E. Contribution of microbiology to world civilization
- II. Cell biology
  - A. Chemistry and biochemistry review
  - B. Lipids, membranes and transport
  - C. DNA, RNA, protein: structure, function and flow of information
  - D. ATP synthesis and cell work
  - E. The eukaryotic cell: structure and function; endosymbiotic theory
  - F. The prokaryotic cell: structure and function
  - G. Comparison of bacteria and archaea
- III. Antimicrobial agents
  - A. Sterilization, disinfectants, antiseptics
  - B. Antibiotics
    - 1. mode of action
    - 2. resistance mechanisms
- IV. Microbial genetics
  - A. Genome and phenotype
  - B. Mutation, selection, adaptation
  - C. Horizontal gene transfer
    - 1. transformation
    - 2. conjugation
    - 3. transduction
  - D. Relation to virulence and antibiotic resistance

#### V. Viruses

- A. Definitions and historical background
- B. Interactions with cells
- C. Viral diseases of importance
- VI. Ecological principles
  - A. The human as ecosystem
  - B. Symbiosis
  - C. Impact on model of infectious disease
- VII. Infectious disease
  - A. Role of microbiome
  - B. Mechanisms of pathogenicity
  - C. Epidemiology
  - D. Role of the host in disease

- 1. innate resistance
- 2. acquired resistance
- E. Vaccination, prevention and treatment
- F. Specific diseases of the human population
- VIII. Applied microbiology
  - A. Modern biotechnology
  - B. Environmental microbiology
    - 1. wastewater treatment
    - 2. antibiotic isolation
    - 3. environmental sampling and analysis
  - C. The role of hospital and public health laboratories
  - D. Fermentation applications

### **Laboratory Exercises**

- I. Laboratory safety and sanitation
- II. Laboratory Techniques
  - A. Aseptic technique
  - B. Bacterial culture (liquid and solid medium)
  - C. Microscopy and staining techniques
  - D. Preparation and sterilization techniques
  - E. Analyses of bacteria in water, soil, and the community at large
  - F. Antibiotic sensitivity
  - G. Metabolic tests and bacterial identification
  - H. Bacterial mutagenesis
  - I. Transformation
  - J. Polymerase chain reaction and gel electrophoresis
  - K. ELISA (enzyme-linked immunosorbent assay)

# **Assignment:**

# Lecture Related Assignments:

- 1. Reading assignments from text, averaging one chapter per week; additional reading assignments averaging 1-5 pages per week
- 2. Research papers: 1-2, averaging 2-4 pages each
- 3. Quizzes: 0-15
- 4. Lecture exams: 3-4 (including multiple choice, completion, and essay questions)
- 5. Oral presentation: 1

# Lab Related Assignments:

- 1. Laboratory experiments, data collection, demonstration of laboratory techniques
- 2. Lab exams: 2-3

### Methods of Evaluation/Basis of Grade:

**Writing:** Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Research papers Writing 4 - 15%

**Problem Solving:** Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

None

Problem solving 0 - 0%

**Skill Demonstrations:** All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Laboratory experiments, data collection, demonstration of laboratory techniques

Skill Demonstrations 1 - 15%

**Exams:** All forms of formal testing, other than skill performance exams.

Quizzes, Lecture exams, Lab exams

Exams 70 - 90%

**Other:** Includes any assessment tools that do not logically fit into the above categories.

Oral presentation, Attendance and participation

Other Category 5 - 15%

### **Representative Textbooks and Materials:**

Microbiology: An Introduction. 12th ed. Tortora, Gerard and Funke, Berdell and Case, Christine. Pearson. 2016

Microbiology: A Systems Approach. 4th ed. Cowan, Marjorie. McGraw-Hill. 2015

Microbiology: A Photographic Atlas for the Laboratory. Alexander, Steven and Strete, Dennis.

Pearson. 2001 (classic)

Instructor prepared lab manual