MATH 58 Course Outline as of Fall 2018

CATALOG INFORMATION

Dept and Nbr: MATH 58 Title: PRECALCULUS TRIGONOMETRY

Full Title: Precalculus Trigonometry

Last Reviewed: 2/10/2020

Units		Course Hours per Week	•	Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Trigonometric functions and their graphs, trigonometric identities, trigonometric equations, inverse trigonometric functions, complex numbers in trigonometric form, polar coordinates, parametric equations, vectors, and applications.

Prerequisites/Corequisites:

Completion of MATH 154 or MATH 155 or higher; or Qualifying Placement from Math Assessment.

See Student Success & Assessment Services (assessment.santarosa.edu) for more information about the assessment process.

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Trigonometric functions and their graphs, trigonometric identities, trigonometric equations, inverse trigonometric functions, complex numbers in trigonometric form, polar coordinates, parametric equations, vectors, and applications. (Grade Only)

Prerequisites/Corequisites: Completion of MATH 154 or MATH 155 or higher; or Qualifying Placement from Math Assessment.

See Student Success & Assessment Services (assessment.santarosa.edu) for more information about the assessment process.

Recommended:

Limits on Enrollment: Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

B Communication and Analytical Fall 2006

Thinking

B Communication and Analytical Fall 1981 Fall 1999

Thinking

MC Math Competency

CSU GE: Transfer Area Effective: Inactive:

B4 Math/Quantitative Reasoning Fall 2006

B4 Math/Quantitative Reasoning Fall 1981 Fall 1996

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 2006 Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

During this course, students will:

- 1. Define and apply the trigonometric functions, using right triangle and unit circle approaches, and using degree and radian measures.
- 2. Verify trigonometric identities.
- 3. Solve equations involving trigonometric functions both graphically and analytically.
- 4. Graph trigonometric functions and their transformations.
- 5. Define and graph the inverse trigonometric functions.
- 6. Apply trigonometric functions and identities to solve application and modeling problems.
- 7. Solve applications and modeling problems using the trigonometric functions, identities, and the Laws of Sines and Cosines.
- 8. Use vectors to model applications in mathematics and science.

Topics and Scope:

- I. Trigonometric Functions
 - A. Radian and degree measures of angles
 - 1. Arc length

- 2. Area of a sector
- 3. Linear and angular velocity
- B. Right triangle and unit circle definitions
- C. Characteristics of trigonometric functions
- II. Identities and Conditional Equations
 - A. Fundamental identities
 - B. Sum and difference identities
 - C. Related identities and their derivations
 - D. Conditional trigonometric equations and applications
- III. Graphical Representation of Trigonometric Functions
 - A. Amplitude
 - B. Reflections
 - C. Period
 - D. Phase (horizontal) shift
 - E. Vertical shifts
- IV. Inverse Functions
 - A. Definitions
 - B. Properties of inverse functions
 - C. Inverse trigonometric functions and their graphs
- V. Solutions of Triangles
 - A. Right triangles
 - B. Oblique triangles
 - C. Laws of Sines and Cosines
 - D. Applications
- VI. Complex Numbers, Polar Coordinates, and Parametric Equations
 - A. Definitions
 - B. Operations
 - C. Graphical representation of complex numbers
 - D. DeMoivre's Theorem
 - E. Polar coordinates
 - F. Parametric equations
- VII. Two Dimensional Vectors
 - A. Geometric and analytic definitions
 - B. Algebra of vectors
 - C. Trigonometric form of vectors
 - D. Dot product
 - E. Applications

Assignment:

- 1. Daily reading outside of class (20-50 pages per week)
- 2. Homework assignments (1-4 per week)
- 3. Quizzes (0-4 per week)
- 4. Exams (3-8)
- 5. Projects (0-10)
- 6. Final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework assignments

Problem solving 5 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Quizzes, exams, and final exam

Exams 70 - 95%

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Other Category 0 - 10%

Representative Textbooks and Materials:

Precalculus: Mathematics for Calculus. 7th ed. Stewart, James and Redlin, Lothar and Watson, Saleem. Cengage L. 2015

Precalculus. 3rd corrected ed. Stitz, Carl and Zeager, Jeffrey. Open Source Text. 2013 (classic)