CATALOG INFORMATION

Dept and Nbr: CS 10A Title: INTRO TO PROGRAMMING
Full Title: Introduction to Programming Concepts and Methodologies
Last Reviewed: 2/8/2021

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
	Contact Total	6.00		Contact Total	105.00	
					0	

Total Out of Class Hours: 105.00
Total Student Learning Hours: 210.00

Title 5 Category: AA Degree Applicable
Grading: Grade or P/NP
Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly: CS 10

Catalog Description:

Specification, design, implementation, testing, debugging, maintenance, and documentation of computer programs. Topics include algorithms, languages, software engineering, control structures, functions, and arrays. Numerous programs are written in C++. Intended for both computer science majors and for those seeking a general introduction to computer programming.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 1A or equivalent; AND completion of MATH 155 and some computer experience

Limits on Enrollment:

Schedule of Classes Information:

Description: Specification, design, implementation, testing, debugging, maintenance, and documentation of computer programs. Topics include algorithms, languages, software engineering, control structures, functions, and arrays. Numerous programs are written in C++. Intended for both computer science majors and for those seeking a general introduction to
computer programming. (Grade or P/NP)
Prerequisites/Corequisites:
Recommended: Eligibility for ENGL 1A or equivalent; AND completion of MATH 155 and some computer experience
Limits on Enrollment:
Transfer Credit: CSU;UC.
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area
CSU GE:	Transfer Area

IGETC: Transfer Area
CSU Transfer: Transferable Effective: Spring 1989 Inactive:
UC Transfer: Transferable Effective: Spring 1989 Inactive:

CID:

CID Descriptor:COMP 122
SRJC Equivalent Course(s):
CID Descriptor:COMP 112
SRJC Equivalent Course(s):

Programming Concepts and Methodology I
CS10A OR CS10B
Introduction to Programming Concepts and Methodologies CS10A

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

1. Describe the principles of structured programming and be able to describe, design, implement,
and test structured programs using currently accepted methodology.
2. Explain what an algorithm is and its importance in computer programming.

Objectives:

Upon completion of this course students will be able to:

1. Create correct and efficient algorithms.
2. Describe the software-development life cycle.
3. Employ the basic elements of the C++ language.
4. Implement algorithms using C++ flow-control constructs.
5. Write descriptive and helpful program documentation.
6. Implement algorithms using arrays.

Topics and Scope:

I. Software life-cycle including design, development, styles, documentation, testing and maintenance
II. Procedural versus objected oriented programming - Survey of Current Languages
III. Program Design Tools and Programming Environments
IV. Documentation
V. Coding Conventions
VI. Data Types, Variables, Expressions, Sequential Processing
VII. Arrays
A. Declaring and allocating arrays
B. Multiple-subscripted arrays
VIII. Control Structure
A. Selective structures: if and switch
B. Repetitive structures: loops
IX. Algorithms including Simple Sorting and Searching
X. File I/O
A. Files and streams
B. Sequential access files
XI. Error Handling
XII. Passing Parameters by Value and by Reference
XIII. Principles of Testing and Designing Test Data

All topics are covered in both the lecture and lab parts of the course.

Assignment:

Lecture Related Assignments:

1. Read approximately 30 pages per week
2. Complete 2-8 examinations including final exam

Lab Related Assignments:

1. Complete $10-15$ programming assignments, with documentation, using the $\mathrm{C}++$ programming language

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written program documentation

Writing 10-20\%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Programming assignments

Problem solving 20-60\%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0-0\%

Exams: All forms of formal testing, other than skill performance exams.

Exams, Final Exam: (Multiple choice, true/false, matching
items, completion, programming problems)
Other: Includes any assessment tools that do not logically fit into the above categories.

None

Representative Textbooks and Materials:

Starting Out with C++ From Control Structures through Objects. 8th ed. Gaddis, Tony. Pearson. 2014

