MATH 9 Course Outline as of Summer 2017

CATALOG INFORMATION

Dept and Nbr: MATH 9 Title: FINITE MATH

Full Title: Finite Mathematics Last Reviewed: 3/13/2023

Units		Course Hours per Week	•	Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Sets, matrices, systems of equations and inequalities, linear programming, combinatorial techniques and probability, mathematics of finance, Markov chains, game theory.

Prerequisites/Corequisites:

Completion of MATH 154 or MATH 155 or higher; or Qualifying Placement from Math Assessment.

See Student Success & Assessment Services (assessment.santarosa.edu) for more information about the assessment process.

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Sets, matrices, systems of equations and inequalities, linear programming, combinatorial techniques and probability, mathematics of finance, Markov chains, game theory. (Grade or P/NP)

Prerequisites/Corequisites: Completion of MATH 154 or MATH 155 or higher; or Qualifying

Placement from Math Assessment.

See Student Success & Assessment Services (assessment.santarosa.edu) for more information about the assessment process.

Recommended:

Limits on Enrollment: Transfer Credit: CSU:UC.

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive:

B Communication and Analytical Fall 1981

Thinking

MC Math Competency

CSU GE: Transfer Area Effective: Inactive:

B4 Math/Quantitative Reasoning Fall 1981

IGETC: Transfer Area Effective: Inactive:

2A Mathematical Concepts & Fall 1981

Quantitative Reasoning

CSU Transfer: Transferable Effective: Fall 1981 Inactive:

UC Transfer: Transferable Effective: Fall 1981 Inactive:

CID:

CID Descriptor: MATH 130 Finite Mathematics

SRJC Equivalent Course(s): MATH9

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

- 1. Apply linear and exponential graphs and functions to solve problems in finance economics.
- 2. Write a system of linear equations to solve applied problems.
- 3. Solve a system of linear equations using Gauss-Jordan elimination and interpret the result.
- 4. Find the inverse of a square matrix and use the inverse to solve a system of linear equations.
- 5. Solve linear programming problems in at least three variables.
- 6. Apply graphical and simplex methods to linear programming problems.
- 7. Find unions, intersections and complements of sets using Venn diagrams.
- 8. Apply the fundamental counting principle, permutations, and combinations to probability problems.
- 9. Determine the probability of a specified event.
- 10. Use expected value, conditional probability, and Markov chains
- 11. Solve applied problems in finance including simple and compound interest.
- 12. Solve applied problems in finance including future and present value, annuities, sinking funds, and amortization.
- 13. Apply fundamentals of game theory.

Topics and Scope:

- I. Discrete Methods
 - A. Set Theory including DeMorgan's Laws and Venn diagrams
 - B. Matrices
- 1. Matrix algebra, including inverses to solve systems of linear equations in at least three variables
 - 2. Using Gauss-Jordan elimination and reduced row echelon form and applications
 - C. Counting techniques
 - 1. Fundamental counting principle
 - 2. Permutations
 - 3. Combinations
- II. Probability
- A. Finding the probability of an event given the probabilities of the simple events in a sample space
 - B. Finding probabilities using combinatorics including permutations and combinations
 - C. Expected value
 - D. Conditional probability
 - E. Markov chains
- III. Linear Programming
 - A. Graphical methods
 - B. Simplex methods in at least 3 variables
- IV. Mathematics of Finance and Economics
 - A. Applications of linear functions to economics
 - 1. Cost, revenue, and profit
 - 2. Supply and demand curves
 - 3. Break-even point
 - 4. Free market equilibrium
 - B. Simple and compound interest functions
 - 1. Solving using exponential functions
 - 2. Solving using logarithmic functions
 - C. Annuities
 - D. Present value
 - E. Future value
 - F. Sinking funds
 - G. Amortization
- V. Game Theory
 - A. Fundamentals
 - B. Matrix methods

Assignment:

- 1. Daily reading outside of class (10-50 pages per week).
- 2. Problem set assignments from required text(s), or supplementary materials chosen by the instructor (1-6 per week).
- 3. Quizzes (0-4 per week).
- 4. Exams (3-8 per term).
- 5. Projects (for example, computer explorations or modeling activities, 0-10 per term).

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Problem solving 5 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice and free response exams; quizzes

Exams 70 - 95%

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Other Category 0 - 10%

Representative Textbooks and Materials:

Finite Mathematics (6th ed.). Waner, Stefan and Constenoble, Steven. Cengage: 2016. Finite Mathematics (13th ed.). Barnett, Raymond; Ziegler, Michael; Byleen, Karl. Pearson: 2014.

Finite Mathematics (11th ed.). Lial, Margaret; Greenwell, Raymond; Ritchey, Nathan. Pearson: 2015.