AUTO 194 Course Outline as of Fall 2018

CATALOG INFORMATION

Dept and Nbr: AUTO 194 Title: INTRO HYBRID VEHICLE Full Title: Introduction to Hybrid Vehicle Maintenance and Repair

Last Reviewed: 11/27/2017

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.50	17.5	Lecture Scheduled	61.25
Minimum	4.00	Lab Scheduled	1.50	6	Lab Scheduled	26.25
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 122.50 Total Student Learning Hours: 210.00

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Principles and functions of hybrid automobiles and procedures for their maintenance, problem diagnosis and repair. Function of individual system components examined. Critical importance of safety and hybrid-unique equipment and procedures, maintenance procedures and diagnostic and repair processes for at least one type of hybrid (Parallel or Series-Parallel) taught in detail.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100; and Course Completion of AUTO 80 and AUTO 156 and IED 190

Limits on Enrollment:

Schedule of Classes Information:

Description: Principles and functions of hybrid automobiles and procedures for their maintenance, problem diagnosis and repair. Function of individual system components examined. Critical importance of safety and hybrid-unique equipment and procedures, maintenance procedures and diagnostic and repair processes for at least one type of hybrid

(Parallel or Series-Parallel) taught in detail. (Grade or P/NP)

Prerequisites/Corequisites:

Recommended: Eligibility for ENGL 100 or ESL 100; and Course Completion of AUTO 80 and

AUTO 156 and IED 190 Limits on Enrollment:

Transfer Credit:

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Effective: Inactive: Area **CSU GE: Transfer Area** Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Effective: Inactive:

UC Transfer: Inactive: Effective:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Present a written diagnosis and repair plan to correct a mechanical/electrical problem on a hybrid vehicle.
- 2. Identify on a vehicle the various hybrid system components.
- 3. Demonstrate knowledge and appropriate use of test equipment.

Objectives:

Upon completion of the course, students will be able to:

- 1. Demonstrate knowledge of introductory principles, motor and generator basics, and battery
- 2. Perform routine hybrid vehicle repairs and maintenance using manufacturer specified procedures.
- 3. Demonstrate safety procedures and describe their critical importance.
- 4. Describe and demonstrate knowledge of system specific repairs and maintenance.
- 5. Use test equipment appropriately to diagnose hybrid system-related problems.

Topics and Scope:

- I. Introductory Principles
 - A. Hybrid and electric vehicle vocabulary
 - B. Hybrid and electric vehicles in production
 - C. Types of hybrid systems 1. Series

 - 2. Parallel

- 3. Series/parallel
- 4. Mild and assist hybrids
- 5. Plug-in hybrids
- D. Electrical theory basics and safety implications
- II. Motor and Generator Basics
 - A. Basic motor operations
 - 1. Series
 - 2. Parallel
 - B. Generators
 - C. Motor generators
 - D. Controllers
- III. Battery Basics
 - A. Lead-Acid (Pb-A)
 - B. AGM (Absorbed Gas Mat) Battery (12 volt system)
 - C. High-Voltage (HV) System Batteries
 - 1. NiMH (Nickel Metal Hydride)
 - 2. Lithium-Ion (Li-Ion) and other new battery technologies
 - 3. Importance of HV state-of-charge
- IV. Hybrid System Components and Operation
 - A. System components
 - 1. Internal combustion engine (ICE) and motor generator (MG)
 - 2. Battery pack
 - 3. Rectifiers, inverters, converters
 - 4. Cables, switches
 - B. Battery charging
 - C. Regenerative braking
 - D. Driving
- V. Safety
 - A. Personal safety
 - B. Electrical safety gloves
 - C. Tools and equipment
 - 1. Mega-ohm meter
 - 2. Scanners (eg, Toyota Technical Information System (TIS))
 - 3. Using appropriate fluids
 - D. Safety procedures (shop)
 - 1. Depowering HV system
 - 2. Importance of ensuring auto in shutdown mode
 - 3. Repowering HV System
 - E. Safety procedures (test driving)
- VI. Honda and/or GM (Mild Hybrid) Systems
 - A. Routine maintenance (unique to this type of hybrid system)
 - 1. System-specific fluids
 - 2. Other system-specific requirements (e.g., brakes)
 - B. Diagnostics (for Hybrid-system related problems)
 - 1. Types and use of test equipment
 - 2. Reading data codes
 - 3. Assuring proper use of fluids
- VII. Toyota and/or Nissan and/or Ford (Full Hybrid) Systems
 - A. Routine maintenance (unique to this type of hybrid system)
 - 1. System-specific fluids
 - 2. Other system-specific requirements (e.g., brakes)
 - B. Diagnostics (for Hybrid-system related problems)

- 1. Types and use of test equipment
- 2. Reading data codes
- 3. Assuring proper use of fluids
- VIII. Plug-in Hybrids
 - A. Battery pack
 - B. Installation
 - C. Interface to car
 - D. Charger
 - E. Troubleshooting
- IX. Personal Standards Expected in the Workplace (NATEF Standard 7.9, tasks 1 5)
 - A. Appropriate dress, language use and manners suitable to the workplace
 - B. Reporting to work on time
 - C. Proper personal hygiene
- D. Meets and maintains employment eligibility criteria i.e., drug/alcohol free status, maintains a clean driving record, etc
 - E. Demonstrates honesty, integrit, and reliability,
- X. Implementing Good Work Habits and Ethics (NATEF Standard 7.10, tasks 1 10)
 - A. Using scientific, technical, engineering and mathematics principles and reasoning
 - B. Addressing the needs of customers, and providing helpful, courteous service
 - C. Implementation of a productive plan of work
 - D. Knowing, understanding, and complying with workplace policies and laws
 - E. Resolving problems that arise during the course of a workday
 - F. Working successfully as a member of a work team
 - G. Assisting others as requested in the workplace
 - H. Working well with customers and other employees
 - I. Negotiating solutions to interpersonal and workplace conflicts
 - J. Interpreting workplace documents
 - K. Contributing ideas and demonstrating initiative in the workplace
 - L. Communication (both verbally and in writing) with customers and coworkers
 - M. Following instructions successfully

All topics are covered in both lecture and lab parts of the course

Assignment:

Lecture-Related Assignments:

- 1. Written paper analyzing one of the current Hybrid auto systems (3-5 pages)
- 2. Evaluations of on-line resources
- 3. Textbook and hand-out reading assignments (approximately 10-25 pages per week)
- 4. Chapter quizzes (5-7), midterm exam and final exam

Lab-Related Assignments:

- 1. Conduct routine diagnostics and maintenance on a college vehicle (or vehicles)
- 2. Orally summarize findings of group diagnostic results and present to class

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written analyses

Writing 10 - 15%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Group routine diagnostics and maintenance; evaluation of online resources

Problem solving 30 - 40%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Demonstration of hybrid auto maintenance and diagnostic procedures

Skill Demonstrations 10 - 20%

Exams: All forms of formal testing, other than skill performance exams.

Chapter quizzes, midterm exam and final exam

Exams 30 - 40%

Other: Includes any assessment tools that do not logically fit into the above categories.

Oral summary of findings

Other Category 5 - 10%

Representative Textbooks and Materials:

Hybrid and Alternative Fuel Vehicles. 4th ed. Halderman, James. 2015 Instructor prepared materials