ELEC 54B Course Outline as of Fall 2016

CATALOG INFORMATION

Dept and Nbr: ELEC 54B Title: ELECTRONIC DEVICES

Full Title: Fundamentals of Electronic Devices

Last Reviewed: 12/13/2021

Units		Course Hours per Week	•	Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	17.5	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Introduction to electronic devices. Concepts of solid-state rectifier and amplifier circuits.

Prerequisites/Corequisites:

Course Completion of ELEC 54A

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Introduction to electronic devices. Concepts of solid-state rectifier and amplifier

circuits. (Grade Only)

Prerequisites/Corequisites: Course Completion of ELEC 54A

Recommended:

Limits on Enrollment: Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 2016 Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Identify and describe the characteristics and applications of semiconductor materials.
- 2. Evaluate the characteristics of devices and apply them to the analysis of power supplies and solid state amplifiers.
- 3. Apply multimeter and oscilloscope measurement techniques to solid state circuits.

Objectives:

Upon completion of the course, the student will be able to:

- 1. Identify the characteristics of semiconductor materials and PN junctions.
- 2. Identify common diode/rectifier power supply circuits.
- 3. Compare the characteristics of basic power supply filters.
- 4. Identify the characteristics of regulated power supplies.
- 5. Calculate circuit values from existing circuit designs of solid state amplifiers.
- 6. Calculate input impedance (Zin), output impedance (Zo) and amplifier gain.
- 7. Recognize the effects of loading upon an individual amplifier stage.
- 8. Describe the behavior of both series and parallel resonance on amplifier performance.
- 9. Identify operation amplifier (op amp) circuits.

Topics and Scope:

- I. Semiconductor physics of a PN junction for forward and reverse bias conditions
- II. Diode circuits
 - A. Rectifiers
 - 1. half wave
 - 2. full wave
 - 3. bridge
 - B. Limiters
 - C. Clampers
- III. Power supply filter circuits
 - A. percent of ripple
 - B. percent of regulation

IV. Regulated power supplies A. three terminal fixed B. three terminal adjustable C. common problems

V. Power supplies

A. linear regulators

- 1. series regulators
- 2. shunt regulators

VI. Power supply types

- A. single voltage
- B. bipolar voltage
- C. voltage multipliers

VII. Solid state device structures and characteristics

- A. bipolar junction transistor (BJT)
- B. junction field effect transistor (JFET) and Common Source (CS) linear amplifier
- C. load lines
- D. biasing
- E. amplification
 - 1. input impedance (Zin)
 - 2. output impedance (Zo)
- F. thermal stability

VIII. Basic amplifier configurations and characteristics

- A. Common input
 - 1. common emitter
 - 2. common source
- B. Common output
 - 1. common collector
 - 2. common drain
- C. Common control
 - 1. common base
 - 2. common gate

IX. Series and parallel resonance, Q factor and bandwidth

- X. Amplifier classes: A, AB, B, C
- XI. Operational amplifier (op amp) fundamentals as applied to systems
 - A. basic parameters
 - 1. open and closed loop gain
 - 2. cut off frequency
 - 3. slew rate
 - 4. gain bandwidth product (GBP)
 - 5. common mode rejection ratio (CMRR)
 - B. BJT Differential Amp

XII. Oscillators

- A. resistor capacitor (RC)
- B. inductor capacitor (LC)
- C. mechanical
 - 1. crystal
 - 2. surface acoustic wave (SAW)
- D. modular

LABORATORY MATERIAL

- I. Diodes & Rectification
- II. Power supply filtering and regulation

- III. Bipolar Junction Transistor (BJT) biasing load line
- IV. BJT Common Emitter (CE) linear amplifier and Common Collector (CC)
- V. Oscillators
 - A. inductor capacitor (LC)
 - B. resistor capacitor (RC) (Wien-Bridge Oscillator)
 - C. 555 Oscillator
- VI. Amplifier lab (discrete)
 - A. single stage (Op Amp)
 - B. multi stage (Op Amp Summing Amp)
 - C. Operational amplifiers (op amp) lab
 - D. Summing Amps and Comparators

Assignment:

- 1. Textbook readings, 20 30 pages per week.
- 2. Homework/lab assignments(1-2 per week)
- 3. Lab Reports (8-14)
- 4. Quizzes (2-4)
- 5 One midterm and one final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Lab reports

Writing 20 - 30%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, lab assignments

Problem solving 30 - 40%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Quizzes; midterm and final exam: objective examinations include multiple choice, true/false, matching items, completion

Exams 30 - 40%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials: Electronic Devices. Floyd, Thomas L. Prentice Hall publishers,	9th edition, 2011.