ELEC 82 Course Outline as of Fall 2018

CATALOG INFORMATION

Dept and Nbr: ELEC 82 Title: MECHATRONICS FUND Full Title: Mechatronics Fundamentals Last Reviewed: 4/10/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.50	17.5	Lecture Scheduled	43.75
Minimum	3.00	Lab Scheduled	1.50	8	Lab Scheduled	26.25
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 87.50

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Analysis and control of systems that combine mechanical elements with electronic components as well as computers and/or microcontrollers. Topics include sensors, actuators, servo and stepper motors and motor controllers.

Prerequisites/Corequisites: Course Completion of ELEC 54C

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Analysis and control of systems that combine mechanical elements with electronic components as well as computers and/or microcontrollers. Topics include sensors, actuators, servo and stepper motors and motor controllers. (Grade Only) Prerequisites/Corequisites: Course Completion of ELEC 54C Recommended: Limits on Enrollment:

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	L		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 2018	Inactive:	
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

1. Identify the different sensor types and measurands; force, temperature, distance, velocity, acceleration, pressure, flow, optical, and chemical.

- 2. Test and plot sensor data to obtain sensor characteristics.
- 3. Demonstrate the operation of servo and stepper motors.

Objectives:

During this course students will:

- 1. Explain how sensor characteristics and signal conditioning affect a simple system.
- 2. Compare sensing of a measurand using sensors based on different physical effects.
- 3. Test and plot sensor data to obtain sensor characteristics
- 4. Demonstrate the use of sensors to provide feedback to a control system.
- 5. Design a useful device containing a sensor or actuator and predict its behavior.
- 6. Interface with microcontrollers using sensors as input and actuators as output.
- 7. Design a motor control system using servo and stepper motors.

Topics and Scope:

- I. Introduction
 - A. Classification of sensors and actuators
 - B. Sensing and actuating strategies
 - C. Sensing
 - D. Transduction
 - E. Evacuation

II. Performance Characteristics

- A. Input/output characteristics
- B. Accuracy and errors
- C. Frequency response and calibration
- D. Applications

- **III.** Temperature Sensors
 - A. Thermistors
 - B. Resistance temperature sensors
- IV. Optical sensors
 - A. Photodiodes
 - B. Phototransistors
 - C. Photoresistors
 - D. Infrared
- V. Magnetic Sensors
 - A. Proximity sensors
 - B. Hall sensors
- VI. Mechanical Sensors
 - A. Accelerometers
 - B. Force sensors
 - C. Pressure sensors
- VII. Acoustic Sensors
- VIII. Chemical Sensors
 - A. Humidity
 - B. Moisture
- IX. Motors as Actuators
 - A. Servo motors and controls
 - B. Stepper motors and controls
- X. Interfacing Methods and Circuits
 - A. Bridge circuits
 - B. Interfacing to microprocessors
 - C. Data transmission
 - D. Power requirements
 - E. Noise and interference
- XI. Interfacing to Microprocessors:
 - A. General requirements for sensors and actuators
 - B. Input signal conditioning
 - C. Output signals (level, power, isolation, etc.)
 - D. Driving methods (direct, PWM)

XII. Laboratory Exercises

- A. Temperature and humidity sensors
- B. Optical sensors
- C. Magnetic sensors
- D. Mechanical sensors
- E. Acoustic sensors
- F. Chemical sensors
- G. Servo motors and controls
- H. Stepper motors and controls
- I. Interfacing to Arduino

Assignment:

Lecture-Related Assignments:

- 1. Reading (10-30 pages per week)
- 2. Homework assignments (1-4)
- 3. Quizzes (2-6) and final exam

Lab-Related Assignments:

1. Laboratory assignments (5-12) including demonstrating operation of a sensor controlled motor

2. Lab reports (4-8)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Lab reports	Writing 20 - 50%		
Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.			
Homework assignments	Problem solving 20 - 30%		
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.			
Laboratory assignments	Skill Demonstrations 10 - 30%		
Exams: All forms of formal testing, other than skill performance exams.			
Quizzes and final exam	Exams 20 - 40%		
Other: Includes any assessment tools that do not logically fit into the above categories.			
None	Other Category 0 - 0%		

Representative Textbooks and Materials:

Fundamentals of Mechatronics. Jouaneh, Musa. Cengage Learning. 2013 (classic)