MACH 51B Course Outline as of Fall 2011

CATALOG INFORMATION

Dept and Nbr: MACH 51B Title: ADV MACHINE TOOL TECH

Full Title: Advanced Machine Tool Technology

Last Reviewed: 2/28/2022

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	2.00	Lecture Scheduled	1.00	17.5	Lecture Scheduled	17.50
Minimum	2.00	Lab Scheduled	3.00	8	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 35.00 Total Student Learning Hours: 105.00

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Advanced machining processes involving the use and care of lathe, mill, drill press, and common hand tools. Measurement, layout, and tolerance application processes relevant to industrial manufacturing.

Prerequisites/Corequisites:

Course Completion of MACH 51.1A (or MACH 51A)

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: Advanced machining processes involving the use and care of lathe, mill, drill press, and common hand tools. Measurement, layout, and tolerance application processes relevant to industrial manufacturing. (Grade Only)

Prerequisites/Corequisites: Course Completion of MACH 51.1A (or MACH 51A)

Recommended: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: **Inactive: CSU GE: Transfer Area** Effective: Inactive:

Transfer Area IGETC: Effective: **Inactive:**

CSU Transfer: Transferable Effective: Fall 1981 **Inactive:**

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of this course, the student will be able to:

- 1. Safely operate a variety of machine tools without supervision.
- 2. Set up machines and produce machine parts independently.
- 3. Calculate speeds, feeds, and RPM (revolutions per minute) for machining various metals.
- 4. Perform precision layouts using metrology layout tools.
- 5. Calculate and cut tapers and angles.
- 6. Determine tolerances according to manufacturing standards.
- 7. Manufacture and "finish" a machined part according to blueprint specifications.
- 8. Identify and locate information in text manuals used in industry.
- 9. Demonstrate proper safety practices, procedures, and professionalism.

Topics and Scope:

- Orientation and Safety
- II. Materials and Processes
 - A. Ferrous metals
 - B. Non-ferrous metals
- III. Material Calculation Formulas
 - A. Feeds
 - B. Speeds
 - C. RPM. (revolutions per minute)
- IV. Metrology Layout Tools
 - A. Sine bar
 - **B.** Protractors
 - C. Gages
- D. Optical alignment magnifier V. Drill Press Operations
- - A. Tools
 - B. Proper set-up procedures

VI. Advanced Lathe Operations

- A. Cutting
 - 1. Tapers
 - 2. Angles
- B. Boring
- C. Work Holding Devices
- VII. Tooling: Use, Care, and Identification
 - A. Types
 - B. Coolants
- VIII. Cutting Tools
 - A. Types
 - B. Calculations
- IX. Advance Mill Operations
 - A. Surface finish
 - B. Tolerances
 - C. Work Holding Devices
- X. G.D.& T. (Geometric dimensioning and tolerances)
 - A. Tolerance applications
 - B. Allowances
 - C. Precise fitting
 - D. Manufacturing standards
- XI. Industrial Text Manuals
 - A. "Machinery's Handbook" machinist reference handbook
 - B. Online research
- XII. Metrics
 - A. Application
 - B. Use of conversion tables used in industry
- XIII. Professionalism
 - A. Safety
 - B. Production quality
 - C. Proper work habits

Assignment:

- 1. Readings in assigned text, approximately 15 to 20 pages per week
- 2. Lab projects will be graded for skill demonstration and problem solving and may include:
 - a) Calculations of speeds and feeds
 - b) Cut taper, angles, and chamfers
 - c) Cut a Morris taper and verify angles with a sine bar and dial indicator
 - d) Cut internal threads on a lathe using a boring bar
 - e) Adherence to proper safety procedures
 - f) Written process procedures
- 3. Compile a notebook of lab notes and handouts
- 4. Organize workspace and clean up lab area
- 5. 3 to 5 quizzes, including safety, and final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Project preparation, process procedures, labnotes

Writing 20 - 30%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Lab projects and lab notebook

Problem solving 10 - 30%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Lab projects, demonstration of proper safety procedures

Skill Demonstrations 20 - 35%

Exams: All forms of formal testing, other than skill performance exams.

Quizzes, and final exam: true/false, multiple choice

Exams 20 - 30%

Other: Includes any assessment tools that do not logically fit into the above categories.

Participation, preparation, work habits

Other Category 10 - 20%

Representative Textbooks and Materials:

Machine Tool Practices, by Kibbe, Keely, Meyer, White; published by Prentice Hall, 9th Ed. 2010.

Instructor prepared materials