MATH 2A Course Outline as of Fall 2010

CATALOG INFORMATION

Dept and Nbr: MATH 2A Title: CALCULUS 3 Full Title: Calculus, Third Course Last Reviewed: 4/21/2008

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Multivariable calculus including partial differentiation and multiple integration, vector analysis including vector fields, line integrals, surface integrals, and the theorems of Green, Gauss & Stokes.

Prerequisites/Corequisites: Math 1B.

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Multivariable calculus including partial differentiation and multiple integration, vector analysis including vector fields, line integrals, surface integrals, and the theorems of Green, Gauss, and Stokes. (Grade Only) Prerequisites/Corequisites: Math 1B. Recommended: Limits on Enrollment:

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication and Analytical Thinking	Effective: Fall 1981	Inactive: Fall 2010
CSU GE:	MC Transfer Area	Math Competency	Effective:	Inactive:
IGETC:	Transfer Area		Effective:	Inactive:
CSU Transfer	:	Effective:	Inactive:	
UC Transfer:		Effective:	Inactive:	

CID:

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

- 1. Compute partial derivatives, directional derivatives and gradients, tangent planes and extrema of functions of two variables.
- 2. Apply chain rules to multivariable and vector functions.
- 3. Compute and apply area in the plane, double integrals and volume, center of mass, and moments of inertia.
- 4. Compute and apply surface area, triple integrals and volume, double integrals in rectangular and polar coordinate systems, and triple integrals in rectangular, cylindrical, and spherical coordinate systems.
- 5. Apply change of variables to evaluate integrals.
- 6. Apply vector fields, line integrals, independence of path, surface integrals, and the theorems of Green, Gauss, & Stokes.

Topics and Scope:

- I. Functions of Several Variables
 - A. Surfaces in space
 - B. Partial derivatives
 - C. Chain rules
 - D. Directional derivatives and gradients
 - E. Tangent planes
 - F. Extrema of functions of two variables
- II. Multiple Integration
 - A. Area in the plane
 - B. Double integrals and volume
 - C. Center of mass and moments of inertia
 - D. Surface area

- E. Triple integrals and volume
- F. Triple integrals in cylindrical and spherical coordinate systems
- G. Change of variables
- III. Vector Analysis
 - A. Vector fields
 - B. Line integrals
 - C. Independence of path
 - D. Surface integrals
 - E. Theorems of Green, Gauss & Stokes

Assignment:

- 1. Daily reading outside of class (approximately 20-50 pages per week).
- 2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor (approximately 1-6 per week).
- 3. Quizzes (approximately 0-4 per week).
- 4. Exams (approximately 3-8 per term).
- 5. Projects (for example, computer explorations or modeling activities, approximately 0-10 per term).

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice and free response exams; quizzes

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Writing 0 - 0%	

Problem solving 5 - 20%

Skill Demonstrations
0 - 0%

Exams	
70 - 95%	

Other Category
0 - 10%

Representative Textbooks and Materials: Calculus: Early Transcendentals (6th). Stewart, James. Thomson Brooks/Cole: 2008. Thomas' Calculus, Early Transcendentals (11th). Thomas, George, et al. Addison-Wesley: 2006.