CATALOG INFORMATION

Dept and Nbr: MATH 1A Title: CALCULUS 1
Full Title: Calculus, First Course
Last Reviewed: 9/14/2020

Units		Course Hours per Week	Nbr of Weeks			Course Hours Total
Maximum	5.00	Lecture Scheduled	5.00	17.5	Lecture Scheduled	87.50
Minimum	5.00	Lab Scheduled	0	8	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
				Non-contact DHR	0	

Total Out of Class Hours: 175.00
Total Student Learning Hours: 262.50

Title 5 Category: AA Degree Applicable
Grading: Grade Only
Repeatability: $\quad 00$ - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:

Catalog Description:

Limits and continuity, differentiation, applications of the derivative, integration, applications of the integral.

Prerequisites/Corequisites:

Completion of MATH 27 or higher (VF); OR Course Completion of MATH 25 and MATH 58; OR Qualifying Test Score in Math Algebra and Course Completion of MATH 58; OR Qualifying Test Score in Math Trigonometry and Course Completion of MATH 25; OR Qualifying Test Score in Math Algebra and Qualifying Test Score in Math Trigonometry

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Limits and continuity, differentiation, applications of the derivative, integration, applications of the integral. (Grade Only)
Prerequisites/Corequisites: Completion of MATH 27 or higher (VF); OR Course Completion of MATH 25 and MATH 58; OR Qualifying Test Score in Math Algebra and Course Completion
of MATH 58; OR Qualifying Test Score in Math Trigonometry and Course Completion of MATH 25; OR Qualifying Test Score in Math Algebra and Qualifying Test Score in Math Trigonometry
Recommended:
Limits on Enrollment:
Transfer Credit: CSU;UC.
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

1. Calculate limits and use limit notation.
2. Determine derivatives of polynomial, rational, algebraic, exponential, logarithmic, and trigonometric functions.
3. Use techniques of differentiation, including product, quotient, and chain rules, and determine derivatives implicitly.
4. Apply derivatives to graphing, optimization, and science applications.
5. Determine antiderivatives of polynomial, rational, algebraic, exponential, logarithmic, and trigonometric functions.
6. Evaluate definite integrals using the fundamental theorem of calculus.
7. Use numerical integration to approximate definite integrals.
8. Apply definite integration to compute area, volumes, and arc length, and to solve problems in science and related fields.
9. Evaluate integrals with the use of tables or a computer algebra system.

Topics and Scope:

I. Limits and Continuity
A. Definitions

1. Limit
2. Basic limit theorems
B. Limits from graphs
C. Continuity
II. The Derivative
A. Definition
B. Difference quotients
C. Slope of tangent line
D. Velocity, acceleration and rates of change
E. Product, quotient, and chain rules
F. Basic differentiation formulas for algebraic, trigonometric, logarithmic, exponential, inverse trigonometric and hyperbolic functions
G. Antiderivatives
III. Applications of the Derivative
A. Implicit differentiation
B. Mean value theorem
C. Differentials
D. Related rates
E. Optimization
F. Separable differential equations
G. Other applications and modeling
H. Indeterminate forms and L'Hospital's rule
IV. The Integral
A. Riemann sums
B. Definite and indefinite integrals
C. Fundamental theorem of calculus
D. Integration of polynomial, logarithmic, exponential, and trigonometric functions
E. Integration by substitution
F. Numerical integration
G. Evaluation by tables or computer algebra systems
V. Applications of the Integral
A. Area
B. Volumes
C. Arc length
D. Other applications and modeling

Assignment:

1. Daily reading outside of class (20-50 pages per week).
2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor (1-6 per week).
3. Quizzes ($0-4$ per week).
4. Exams (3-8 per term) including final exam.
5. Projects (for example, computer explorations or modeling activities, $0-10$ per term).

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment
Writing 0-0\% tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Homework problems
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None
Exams: All forms of formal testing, other than skill performance exams.

Final Exam: Multiple choice and free response exams; quizzes

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Representative Textbooks and Materials:

Calculus: Early Transcendentals (6th). Stewart, James. Thomson Brooks/Cole: 2008.

Problem solving 5-20\%

Skill Demonstrations 0-0\%

Exams
70-95\%

Other Category 0-10\%

