AUTO 194 Course Outline as of Spring 2011

CATALOG INFORMATION

Dept and Nbr: AUTO 194 Title: INTRO HYBRID VEHICLE Full Title: Introduction to Hybrid Vehicle Maintenance and Repair Last Reviewed: 11/27/2017

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.50	17.5	Lecture Scheduled	61.25
Minimum	4.00	Lab Scheduled	1.50	6	Lab Scheduled	26.25
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 122.50

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	DET 194
Formerly:	

Catalog Description:

Principles and functions of hybrid automobiles and procedures for their maintenance, problem diagnosis and repair. Function of individual system components examined. Critical importance of safety and hybrid-unique equipment and procedures, maintenance procedures and diagnostic and repair processes for at least one type of hybrid (Parallel or Series-Parallel) taught in detail.

Prerequisites/Corequisites:

Recommended Preparation: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: Principles and functions of hybrid automobiles and procedures for their maintenance, problem diagnosis and repair. Function of individual system components examined. Critical importance of safety and hybrid-unique equipment and procedures, maintenance procedures and diagnostic and repair processes for at least one type of hybrid (Parallel or Series-Parallel) taught in detail. (Grade or P/NP)

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	Effective:	Inactive:
CSU Transfer	: Effective:	Inactive:	
UC Transfer:	Effective:	Inactive:	

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Outcomes and Objectives:

Upon completion of the course, students will be able to:

1. Demonstrate knowledge of introductory principles, motor and generator basics, and battery basics.

- 2. Perform routine hybrid vehicle repairs and maintenance using manufacturer specifications.
- 3. Demonstrate safety procedures and describe their critical importance.
- 4. Describe and demonstrate knowledge of system specific repairs and maintenance.
- 5. Use test equipment appropriately to diagnose hybrid system-related problems.

Topics and Scope:

- A. Introductory Principles
 - 1. Hybrid and electric vehicle vocabulary
 - 2. Hybrid and electric vehicles in production
 - 3. Types of hybrid systems
 - a. Series
 - b. Parallel
 - c. Series/parallel
 - d. Mild and assist hybrids
 - e. Plug-in hybrids
 - 4. Electrical theory basics and safety implications

B. Motor and Generator Basics

- 1. Basic motor operations
 - a. Series
 - b. Parallel
- 2. Generators
- 3. Motor generators

- 4. Controllers
- C. Battery Basics
 - 1. Lead-Acid (Pb-A)
 - 2. AGM (Absorbed Gas Mat) Battery (12 volt system)
 - 3. High-Voltage (HV) System Batteries
 - a. NiMH (Nickel Metal Hydride)
 - b. Lithium-Ion (Li-Ion) and other new battery technologies
 - c. Importance of HV state-of-charge
- D. Hybrid System Components and Operation
 - 1. System components
 - a. Internal combustion engine (ICE) and motor generator (MG)
 - b. Battery pack
 - c. Rectifiers, inverters, converters
 - d. Cables, switches
 - 2. Battery charging
 - 3. Regenerative braking
 - 4. Driving
- E. Safety
 - 1. Personal safety
 - 2. Electrical safety gloves
 - 3. Tools and equipment
 - a. Mega-ohm meter
 - b. Scanners (eg, Toyota Technical Information System (TIS))
 - c. Using appropriate fluids
 - 4. Safety procedures (shop)
 - a. Depowering HV system
 - b. Importance of ensuring auto in shutdown mode
 - c. Repowering HV System
 - 5. Safety procedures (test driving)
- F. Honda and/or GM (Mild Hybrid) Systems
 - 1. Routine maintenance (unique to this type of hybrid system) a. System-specific fluids
 - b. Other system-specific requirements (e.g., brakes)
 - 2. Diagnostics (for Hybrid-system related problems)
 - a. Types and use of test equipment
 - b. Reading data codes
 - c. Assuring proper use of fluids
- G. Toyota and/or Nissan and/or Ford (Full Hybrid) Systems
 - 1. Routine maintenance (unique to this type of hybrid system)
 - a. System-specific fluids
 - b. Other system-specific requirements (e.g., brakes)
 - 2. Diagnostics (for Hybrid-system related problems)
 - a. Types and use of test equipment
 - b. Reading data codes
 - c. Assuring proper use of fluids
- H. Plug-in Hybrids
 - 1. Battery pack
 - 2. Installation
 - 3. Interface to car
 - 4. Charger
 - 5. Troubleshooting

Assignment:

1. Conduct routine diagnostics and maintenance on a college vehicle (or vehicles)

2. Written paper analyzing one of the current (Toyota, Honda, Nissan or GM) Hybrid auto systems (3-5 pages)

- 3. Orally summarize findings of group diagnostic results and present to class
- 4. Evaluations of on-line resources
- 5. Textbook and hand-out reading assignments (approximately 10-25 pages per week)
- 6. Chapter quizzes (5-7), midterm exam and final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written analyses

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Group routine diagnostics and maintenance; evaluation of online resources

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Demonstration of hybrid auto maintenance and diagnostic procedures

Exams: All forms of formal testing, other than skill performance exams.

Written exams and final

Other: Includes any assessment tools that do not logically fit into the above categories.

Oral summary of findings

Representative Textbooks and Materials:

Hybrid, Electric & Fuel Cell Vehicles. Erjavec, Jack & Jeff Arias. Delmar Cengage Learning, 2006.

Rosebro, Jack. Basic Hybrid Powertrains. Perfect Sky, 2008. Instructor prepared materials Problem solving 30 - 40%

Writing

10 - 15%

Skill Demonstrations 10 - 20%

Exams 30 - 40%

Other Category 5 - 10%