MATH 15 Course Outline as of Fall 2006

CATALOG INFORMATION

Dept and Nbr: MATH 15 Title: ELEMENTARY STATISTICS Full Title: Elementary Statistics Last Reviewed: 1/9/2024

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	4.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 140.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Exploration of concepts in statistics, descriptive statistics, probability theory (including but not limited to the uniform, binomial, Poisson, normal, chi-square and t distributions), Central Limit Theorem, estimation of population parameters from a sample, hypothesis testing (including parametric and nonparametric methods), correlation and linear regression, introduction to analysis of variance, computer simulations.

Prerequisites/Corequisites:

Completion of MATH 155 or higher (VE)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Exploration of concepts in statistics, descriptive statistics, probability theory, Central Limit Theorem, estimation of population parameters from a sample, hypothesis testing, correlation and linear regression, introduction to analysis of variance, computer simulations. (Grade or P/NP)

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B		n and Analytical	Effective: Fall 1989	Inactive:
CSU GE:	MC Transfer Area B4	Thinking Math Competer Math/Quantitat	2	Fall 1981 Effective: Fall 1990	Inactive:
IGETC:	Transfer Area 2A	Mathematical C Quantitative Re	1	Effective: Fall 1993	Inactive:
CSU Transfer:	Transferable	Effective:	Fall 1989	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1989	Inactive:	
CID: CID Descriptor		Introduction to			

SRJC Equivalent Course(s): MATH15 OR PSYC9

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course, students will be able to:

- 1. Create and use graphic displays of data and frequency distributions.
- 2. Define mean, median, mode, percentiles, variability and standard deviation and compute each for sets of data.
- 3. Use laws of probability and Baye's formula.
- 4. Define and apply combinations, permutations, sample space, and probability distributions.
- 5. Apply Central Limit Theorem.
- 6. Calculate sampling distributions of means, proportions and standard error.
- 7. Compute confidence intervals and required sample size.
- 8. Perform hypothesis testing for mean, proportion and variance.
- 9. Implement goodness of fit test, the test for independence, and Analysis of Variance.
- 10. Discuss linear regression and correlation, and use technology to compute regression equations.
- 11. Use statistics software package for evaluation of data and inference.

Topics and Scope:

Instructional methodology may include, but is not limited to: lecture, demonstrations, oral recitation, discussion, supervised practice, independent study, outside project or other assignments.

I. Statistical Description

- A. Graphic display of data
- B. Frequency distributions
- C. Mean
- D. Median
- E. Mode
- F. Percentiles
- G. Variability
- H. Standard deviation
- I. Chebyshev's Theorem
- II. Counting and Probability Distributions
 - A. Laws of probability and counting
 - B. Combinations
 - C. Permutations
 - D. Probability distributions (including, but not limited to, the following)
 - 1. Uniform
 - 2. Binomial
 - 3. Poisson
 - 4. Normal
 - 5. Chi-square
 - 6. t
- III. Statistical Inference
 - A. Sampling distributions
 - 1. Means
 - 2. Proportions
 - 3. Differences of means
 - B. Standard error
 - C. Central Limit Theorem
 - D. Confidence intervals
 - E. Hypothesis testing (parametric and extended nonparametric)
 - 1. Mean
 - 2. Proportion
 - 3. Differences of means
 - 4. Variances
 - 5. Goodness of fit and independence
 - F. Required sample size
 - G. Correlation and linear regression
 - H. Introduction to analysis of variance
- IV. Use of Computer and Electronic Calculator
 - A. Evaluation of data
 - B. Methods of simulations

Assignment:

- 1. Daily reading outside of class (approximately 0-50 pages per week),
- 2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor,

- 3. Exams and quizzes,
- 4. Projects.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, Free reponse exams, quizzes

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects (e.g., computer activities, surveys or data collection and analysis)

Representative Textbooks and Materials:

Text(s) required of each student will be selected by the department, a committee of the department, or the responsible instructor from the books currently available. Choices in the past have included: Elementary Statistics (3rd ed.). Larson, Ron and Farber, Betsy. Pearson: 2006.

Elementary Statistics (5th ed.). Bluman, Allan. McGraw-Hill: 2004. Modern Elementary Statistics (11th ed.). Freund, John. Pearson: 2004.

Writing 0 - 0%	

Problem solving			
5 - 20%			

Skill Demonstrations 0 - 0%

> Exams 70 - 95%

Other Category 0 - 10%