MATH 60 Course Outline as of Fall 2004

CATALOG INFORMATION

Dept and Nbr: MATH 60 Title: GEOMETRY/LIBERAL STUDIES Full Title: Geometry for Liberal Studies Last Reviewed: 11/24/2003

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

This course is a study of Euclidean geometry, emphasizing its structure as a logical system. Recommended for liberal studies and elementary education students.

Prerequisites/Corequisites: Math 155.

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: This course is a study of Euclidean geometry, emphasizing its structure as a logical system. Recommended for liberal studies and elementary education students. (Grade or P/NP) Prerequisites/Corequisites: Math 155. Recommended: Limits on Enrollment: Transfer Credit: CSU; Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication	n and Analytical	Effective: Fall 2004	Inactive: Spring 2011
CSU GE:	MC Transfer Area	Math Competer	ncy	Fall 1981 Effective:	Fall 2009 Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	Transferable	Effective:	Fall 2004	Inactive:	Spring 2011
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course, students will be able to:

- 1. Define a mathematical system
- 2. Apply inductive reasoning to plane figures
- 3. Apply deductive reasoning to proofs of theorems
- 4. Define congruent and similar triangles
- 5. Define parallel and perpendicular lines
- 6. Apply perimeter and area formulas
- 7. Apply rigid transformations
- 8. Define tessellations
- 9. Apply volume and surface area formulas
- 10. Apply geometry software

Topics and Scope:

- I. Basic Concepts
 - A. Structure of a Mathematical System
 - 1. Undefined terms
 - 2. Theorems and proofs
 - B. Angles
 - C. Compass and straightedge constructions
- II. Perpendicular and Parallel Lines
 - A. Definitions and properties
 - B. Triangle angle sum theorem
- III. Triangles and Circles
 - A. Congruence conditions for triangles
 - B. Similar triangles
 - C. Pythagorean theorem
 - D. Circle theorems
- IV. Plane Figures

- A. Polygons
- B. Perimeter
- C. Area
- V. Transformations
 - A. Translations
 - **B.** Rotations
 - C. Reflections
- VI. Tessellations
- VII. Solids
 - A. Volume
 - B. Surface area
 - C. Euler's formula

Assignment:

- 1. Weekly reading from the text or instructor prepared materials (20 50 pages per week)
- 2. Assigned problems from the text or instructor prepared materials.
- 3. Performance exams such as compass and straight-edge constructions.
- 4. An oral or written project may be assigned.
- 5. Objective exams.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

written report may be assigned

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Performance exams

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice

Other: Includes any assessment tools that do not logically fit into the above categories.

PROJECT - ORAL OR WRITTEN (optional)

	Writing 1 - 15%
ams, that	
	Problem solving 25 - 74%
ıl ıding skill	
	Skill Demonstrations 20 - 40%
11	
	Exams 5 - 25%
ogically	
	Other Category

0 - 15%

Representative Textbooks and Materials: Geometry, An Investigative Approach, O'Daffer Clemens (2nd), Addison Wesley, 1992 Geometry and Its Applications, Walter Meyer, Academic Press, 1999