CATALOG INFORMATION

Dept and Nbr: CIS 10A Title: COMP SCI FUNDAMENTALS I
Full Title: Computer Science Fundamentals I
Last Reviewed: 2/8/2021

Units		Course Hours per Week	Nbr of Weeks			Course Hours Total		
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00		
Minimum	3.00	Lab Scheduled	2.00	8	Lab Scheduled	35.00		
		Contact DHR	1.00		Contact DHR	17.50		
		Contact Total	5.00		Contact Total	87.50		

Non-contact DHR 0

Total Out of Class Hours: 70.00

Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable
Grading: Grade Only
Repeatability: $\quad 00$ - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:
CIS 10

Catalog Description:

This course introduces computer science and software engineering. Topics include machine architecture, software theory, integrated development environments, object-oriented design and control-of-flow constructs. Eight to ten programs are written in C++. Appropriate as a first course for those pursuing a four-year degree in computer science. Also serves as an introduction to programming for those interested in languages other than C++.

Prerequisites/Corequisites:

Completion of Math 155 or higher.

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Introduces computer science \& software engineering. Includes machine architecture, software theory, integrated development environments, object-oriented design and control-of-flow constructs. C++ is used. Serves as a first course for four-year degree computer science majors. Also serves as an intro to programming for languages other than $\mathrm{C}++$. (Grade

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

CSU GE: Transfer Area
IGETC: Transfer Area
CSU Transfer: Transferable Effective: Spring 1989 Inactive:
UC Transfer: Transferable Effective: Spring 1989 Inactive:

CID:

CID Descriptor:COMP 122 Programming Concepts and Methodology I
SRJC Equivalent Course(s):
CID Descriptor:COMP 112
SRJC Equivalent Course(s):

AS Degree: Area Effective: Inactive:
Effective: Inactive:
Effective: Inactive: CS10A OR CS10B
Introduction to Programming Concepts and Methodologies CS10A

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Students will:

1. Translate integers, real numbers, and characters into machine representation.
2. Explain machine architectures and the stored-program concept.
3. Compare various computer operating system designs.
4. Create correct and efficient algorithms.
5. Describe alternative programming language designs and implementations.
6. Implement the software-development life cycle.
7. Produce multi-file programs using an integrated development environment.
8. Employ the basic elements of the C++ language.
9. Use object-oriented language features as a client programmer.
10. Implement algorithms using $\mathrm{C}++$ flow-control constructs.
11. Understand career objectives related to Computer Science.
12. Use information and learning resources as they pertain to Computer Science

Topics and Scope:

A. Computer Science

1. Machine Architecture
a. Data Storage
1) Primary and secondary storage
2) Coding
a) The binary system
b) Integers, reals and characters
c) Error detection and correction
b. Data Manipulation
3) The CPU
4) The stored-program concept
5) programs as data and their execution
2. Software
a. Operating Systems and Networks
1) History
2) Interprocess coordination
3) Networks
b. Algorithms
4) Representation and discovery
5) Iterative and recursive structures
6) Efficiency and correctness
c. Languages
7) History
8) Traditional concepts
9) Declarative, procedural and object-oriented approaches
d. Software Engineering
10) The software life cycle
11) Tools and techniques
12) Documentation
13) Legal issues
3. Career objectives related to Computer Science
4. Information and learning resources as they pertain to

Computer Science
B. Programming

1. Integrated Development Environments
a. Projects
b. Editors
c. Debuggers
d. Browsers
e. Profilers
2. Language Basics
a. Data types and assignments
b. Basic C++ input/output
c. Expressions
d. Flow of control
e. Style
3. Procedural Abstraction
a. Top Down Design
b. Library functions
c. User-defined functions
d. Overloading
4. $\mathrm{C}++\mathrm{I} / \mathrm{O}$
a. Streams
b. Manipulators
5. Client Programming and Classes
a. Structures
b. Classes
c. Abstract Data Types
6. Miscellaneous flow of control Constructs
a. Nesting
b. Enumerations
c. The case construct (switch)

Assignment:

1. Maintain a reading schedule for the text(s).
2. Write programs using the $\mathrm{C}++$ programming language.
3. Test and debug programs.
4. Write program documentation.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written program documentation

Writing
$10-20 \%$

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Homework problems, Exams, LABORATORY ASSIGNMENTS

Problem solving 20-60\%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None
Skill Demonstrations 0-0\%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion, Programming exercises

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category
0-0\%

Exams
20-60\%

Representative Textbooks and Materials:

"Problem Solving with C++: The Object of Programming", by Walter Savitch - Addison-Wesley Longman 1999
"Computer Science: An Overview", by J. Brookshear - Addison-Wesley
Longman 1997

