CIS 10A Course Outline as of Fall 2001

CATALOG INFORMATION

Dept and Nbr: CIS 10A Title: COMP SCI FUNDAMENTALS I

Full Title: Computer Science Fundamentals I

Last Reviewed: 2/8/2021

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	2.00	8	Lab Scheduled	35.00
		Contact DHR	1.00		Contact DHR	17.50
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: CIS 10

Catalog Description:

This course introduces computer science and software engineering. Topics include machine architecture, software theory, integrated development environments, object-oriented design and control-of-flow constructs. Eight to ten programs are written in C++. Appropriate as a first course for those pursuing a four-year degree in computer science. Also serves as an introduction to programming for those interested in languages other than C++.

Prerequisites/Corequisites:

Completion of Math 155 or higher.

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Introduces computer science & software engineering. Includes machine architecture, software theory, integrated development environments, object-oriented design and control-of-flow constructs. C++ is used. Serves as a first course for four-year degree computer science majors. Also serves as an intro to programming for languages other than C++. (Grade

Only)

Prerequisites/Corequisites: Completion of Math 155 or higher.

Recommended:

Limits on Enrollment:

Transfer Credit: CSU;UC. (CAN CIS 10A+CIS 10A=CSCI22)(CIS 10A+CIS 10A=CSCI22)

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Spring 1989 Inactive:

UC Transfer: Transferable Effective: Spring 1989 Inactive:

CID:

CID Descriptor: COMP 122 Programming Concepts and Methodology I

SRJC Equivalent Course(s): CS10A OR CS10B

CID Descriptor: COMP 112 Introduction to Programming Concepts and Methodologies

SRJC Equivalent Course(s): CS10A

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Students will:

- 1. Translate integers, real numbers, and characters into machine representation.
- 2. Explain machine architectures and the stored-program concept.
- 3. Compare various computer operating system designs.
- 4. Create correct and efficient algorithms.
- 5. Describe alternative programming language designs and implementations.
- 6. Implement the software-development life cycle.
- 7. Produce multi-file programs using an integrated development environment.
- 8. Employ the basic elements of the C++ language.
- 9. Use object-oriented language features as a client programmer.
- 10. Implement algorithms using C++ flow-control constructs.
- 11. Understand career objectives related to Computer Science.
- 12. Use information and learning resources as they pertain to Computer Science

Topics and Scope:

- A. Computer Science
 - 1. Machine Architecture
 - a. Data Storage

- 1) Primary and secondary storage
- 2) Coding
 - a) The binary system
 - b) Integers, reals and characters
 - c) Error detection and correction
- b. Data Manipulation
 - 1) The CPU
 - 2) The stored-program concept
 - 3) programs as data and their execution
- 2. Software
 - a. Operating Systems and Networks
 - 1) History
 - 2) Interprocess coordination
 - 3) Networks
 - b. Algorithms
 - 1) Representation and discovery
 - 2) Iterative and recursive structures
 - 3) Efficiency and correctness
 - c. Languages
 - 1) History
 - 2) Traditional concepts
 - 3) Declarative, procedural and object-oriented approaches
 - d. Software Engineering
 - 1) The software life cycle
 - 2) Tools and techniques
 - 3) Documentation
 - 4) Legal issues
- 3. Career objectives related to Computer Science
- 4. Information and learning resources as they pertain to Computer Science
- B. Programming
 - 1. Integrated Development Environments
 - a. Projects
 - b. Editors
 - c. Debuggers
 - d. Browsers
 - e. Profilers
 - 2. Language Basics
 - a. Data types and assignments
 - b. Basic C++ input/output
 - c. Expressions
 - d. Flow of control
 - e. Style
 - 3. Procedural Abstraction
 - a. Top Down Design
 - b. Library functions
 - c. User-defined functions
 - d. Overloading
 - 4. C++ I/O
 - a. Streams
 - b. Manipulators

- 5. Client Programming and Classes
 - a. Structures
 - b. Classes
 - c. Abstract Data Types
- 6. Miscellaneous flow of control Constructs
 - a. Nesting
 - b. Enumerations
 - c. The case construct (switch)

Assignment:

- 1. Maintain a reading schedule for the text(s).
- 2. Write programs using the C++ programming language.
- 3. Test and debug programs.
- 4. Write program documentation.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written program documentation

Writing 10 - 20%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, Exams, LABORATORY ASSIGNMENTS

Problem solving 20 - 60%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion, Programming exercises

Exams 20 - 60%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category

Representative Textbooks and Materials:

"Problem Solving with C++: The Object of Programming", by Walter Savitch - Addison-Wesley Longman 1999

"Computer Science: An Overview", by J. Brookshear - Addison-Wesley Longman 1997