HORT 92.1 Course Outline as of Fall 2002

CATALOG INFORMATION

Dept and Nbr: HORT 92.1 Title: LANDSCAPE IRRIGATION

Full Title: Landscape Irrigation Last Reviewed: 12/12/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	12	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: AG 91B

Catalog Description:

Prepares students to design, install, and maintain a water efficient landscape irrigation system. Topics include basic hydraulics, component identification and terminology, system layout, pipe sizing, and types of valves, heads, and controllers.

Prerequisites/Corequisites:

Recommended Preparation:

Course Completion of AGBUS 70 (or AG 78)

Limits on Enrollment:

Schedule of Classes Information:

Description: Design, installation, and maintenance of a water efficient landscape irrigation system. Basic hydraulics, component identification and terminology, layout, pipe sizing, and types of heads, valves, controllers. (Grade or P/NP)

Prerequisites/Corequisites:

Recommended: Course Completion of AGBUS 70 (or AG 78)

Limits on Enrollment:

Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Spring 1988 Inactive: Fall 2018

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of this course the student will be able to:

- 1. Describe soil/water relationship.
- 2. Identify system components on an irrigation plan.
- 3. Describe and calculate friction loss.
- 4. Calculate water pressure and flow at key points in a system.
- 5. Explain the function of backflow prevention devices.
- 6. Describe the major types of sprinkler heads, valves, and controllers.
- 7. Space sprinkler heads for uniform application and specified precipitation rate.
- 8. Select pipe material based on use, water pressure, and flow.
- 9. Identify and select pipe fittings.
- 10. Work with others to install PVC pipe, sprinkler heads, and remote control valves.
- 11. Program a controller for water-efficient system operation.
- 12. With a small group, perform a water audit to determine system efficiency.
- 13. Troubleshoot and solve irrigation system problems.
- 14. Prepare and present a cost estimate for an irrigation system.

Topics and Scope:

- I. Basic hydraulics and water movement through pipe
 - A. Static pressure
 - B. Dynamic (operating) pressure
 - C. Flow (GPM)
 - D. Velocity
 - E. Friction loss
- F. Calculation of water forces at key system points.
- II. Soil and plant water relations

- A. Soil types and drainage/aeration characteristics
- B. Soil water holding capacity and rooting depth
- C. Water use of plant types
- D. Evapotranspiration concept and reference ET
- E. Infiltration rates of soils
- III. Water supply
 - A. City mains and service lines
 - B. Wells, pumps, and storage facilities
- IV. Assembly methods and installation of system components
 - A. Sprinkler heads and nozzles
 - B. Manual and remote control valves
 - C. Backflow prevention devices
 - D. Pressure regulators
- E. Controllers
- V. Pipe and fittings
 - A. PVC pipe
 - 1. Class and schedule
 - 2. Nomenclature of fittings and connectors
 - 3. Tools, cements, glues, tapes
 - 4. Assembly and installation
 - B. Polyethylene pipe
 - 1. Nomenclature of fittings and connectors
 - 2. Drip and low volume tubing, emitters, and sprayers
 - 3. Retrofit adapters
 - 4. Assembly and installation
 - C. Galvanized steel pipe
 - 1. Nomenclature of fittings and connectors
 - 2. Tools, thread compounds, tapes
 - 3. Assembly and installation
- VI. System planning and layout
- A. Available water pressure and flow at point of connection
- B. Watering zones (hydrozones)
- C. Head selection and placement
- D. Precipitation rates and head spacing
- E. Circuiting heads into valve groups
- F. Location of valves, main lines, and lateral lines
- G. Sizing valves and pipe
- H. Location of controller and sizing power and valve wires
- I. Controller programming and system operation check
- VII. Estimating costs
- A. Irrigation plan reading and standard symbols
- B. Material take-off
- C. Supplier catalogs and price lists
- VIII. Water-efficient system operation
 - A. Water audit method of determining system efficiency
 - B. Use of California Irrigation Management Information System (CIMIS) and other ET data resources
- C. Implementation of ET data in controller programming
- D. Troubleshooting problems
- E. Adjustments and repairs
- F. Local water agency assistance and resources

Assignment:

- 1. Assemble a PVC irrigation system.
- 2. Calculate static, working, & design pressure.
- 3. Identify system components.
- 4. Program a basic residential irrigation controller.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written homework

Writing 5 - 15%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, Quizzes

Problem solving 10 - 20%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Class performances, Performance exams

Skill Demonstrations 35 - 60%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion

Exams 10 - 30%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

Turf Irrigation Design Manual. Rain Bird, 2001.

California Landscape Contractor Association (1998). California Landscape Standards. CLCA, Sacramento, CA.

Shepersky, K. Ed. (1998). Landscape Irrigation Design and Specifications. Rain Bird Sales.