MATH 36 Course Outline as of Fall 1999

CATALOG INFORMATION

Dept and Nbr: MATH 36 Title: FORTRAN PROGRAM-SCI Full Title: FORTRAN Programming for Science Last Reviewed: 2/25/1999

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	3.00		Contact DHR	52.50
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	MATH 17

Catalog Description:

The solution of mathematical, scientific and engineering problems using the FORTRAN language. Emphasis on structured programming, including documentation, formatted input/output, control statements, arrays and subprograms.

Prerequisites/Corequisites: MATH 27 (formerly MATH 57).

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Recommended: Previous programming course or experience. Programming in the FORTRAN language for mathematics, science and engineering. (Grade Only) Prerequisites/Corequisites: MATH 27 (formerly MATH 57). Recommended: Limits on Enrollment: Transfer Credit: CSU;UC. (CAN CSCI4)

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication Thinking	n and Analytical	Effective: Fall 1981	Inactive: Spring 2008
CSU GE:	Transfer Area B4	Math/Quantitative Reasoning		Effective: Fall 1981	Inactive: Spring 2008
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 1981	Inactive:	Spring 2008
UC Transfer:	Transferable	Effective:	Fall 1981	Inactive:	Spring 2008

CID:

Certificate/Major Applicable:

Not Certificate/Major Applicable

COURSE CONTENT

Outcomes and Objectives:

To be successful, students should be able to:

- 1. Use FORTRAN arithmetic statements, including integer, real, complex, character and logical variables and expressions.
- 2. Perform FORTRAN arithmetic with intrinsic functions, operations, precedence and mixed modes
- 3. Use control statements: DO, IF, WHILE, and CASE.
- 4. Use input and output statements to create and access data files.
- 5. Use subscripted variables, arrays, with single and multiple subscripts.
- 6. Create and use subprograms which include parameter passing and the COMMON statement.
- 7. Write computer programs in FORTRAN to solve problems in mathematics and science. Program topics may be drawn from: algebraic and transcendental equation solutions, analytic geometry, statics, empirical probability simulation, and computations of numerical sequences and series.

Topics and Scope:

1. The Fortran Language.

Some history, hierarchy of languages, programming techniques (including sequencing, selection, and repetition), internal and external documentation.

- 2. Arithmetic Statements. Integer, real, complex, character, and logical variables and expressions, intrinsic functions, operations, precedence, and mixed modes.
- 3. Control Statements.

DO, IF, WHILE, and CASE.

4. Input and Output. Formatted and unformatted I/O (including field descriptors, I, F, E, and A.), implied DO and DATA statements, creating and accessing files.

- 5. Subprograms. Functions and subroutines (including parameter passing and the COMMON statement).
- 6. Subscripted Variables. Arrays, single and multiple subscripts.
- 7. Problem Solving.

Programs selected from mathematics, science, and engineering applications utilizing the techniques of soring, searching, simulation, recursion, and iteration.

Assignment:

- 1. The student will have daily outside reading, programming assignments, problem set assignments from required text(s), or instructor chosen supplementary materials.
- 2. Instructional methodology may include, but not limited to: lecture, demonstrations, oral recitation, discussion, supervised practice, independent study, outside project or other assignments.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments and skill demonstrations are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Lab reports, Exams

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Performance exams

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice

Writing 0 - 0%	

Problem solving 50 - 75%

Skill Demonstrations
10 - 25%

Exams	
5 - 25%	

WRITING ASSIGNMENTS

Other Category 0 - 15%

Representative Textbooks and Materials:

Text(s) required of each student will be selected by the department, a committee of the department, or the responsible instructor from the books currently available. Choices in the past have included: An Introduction to Fortran 90 for Scientific Computing (2nd) by Ortega Saunders Publishing, 1998. Introduction to Computing for Engineers,(3rd) by Mayo/Cwiakawa, McGraw Hill, 1997.