CIS 22 Course Outline as of Fall 2001

CATALOG INFORMATION

Dept and Nbr: CIS 22 Title: ASSEMBLY LANG PROG

Full Title: Assembly Language Programming

Last Reviewed: 1/28/2019

Units		Course Hours per Week]	Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	0	17	Lab Scheduled	0
		Contact DHR	5.00		Contact DHR	87.50
		Contact Total	8.00		Contact Total	140.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 245.00

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 10 - 8 Units Total

Also Listed As:

Formerly: BDP 22

Catalog Description:

Techniques of assembly language programming for the Intel family of microprocessors. Topics include IBM hardware, architecture (bus, memory, stack, I/O), design of structured assembly language code, use of software interrupts, survey arithmetic notations (BCD, floating point, binary), and discussion of I/O and disk processing concepts.

Prerequisites/Corequisites:

Course Completion of CIS 10B

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Techniques of assembly language programming for the Intel family of

microprocessors. (Grade Only)

Prerequisites/Corequisites: Course Completion of CIS 10B

Recommended:

Limits on Enrollment:

Transfer Credit: CSU; UC. (CAN CSCI10)

Repeatability: 8 Units Total

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 1982 Inactive:

UC Transfer: Transferable Effective: Fall 1982 Inactive:

CID:

CID Descriptor: COMP 142 Computer Architecture and Organization

SRJC Equivalent Course(s): CS12

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Students will:

- 1. Create a complete set of source modules using standard design tools
- 2. Prepare executable assembly language programs which include at least one subroutine library module.
- 3. Distinguish and categorize the architectural components of the Intel X86 family of microprocessors.
- 4. Create programs which carry out BCD, floating-point, and binary arithmetic operations.
- 5. Demonstrate ability to convert numbers to and from decimal, binary, octal, and hexadecimal.
- 6. Demonstrate ability to use six BIOS and six DOS software interrupts.

Topics and Scope:

- 1. Assembly Language Environment.
 - A. Software design process.
 - B. Programming tools.
 - 1. editors
 - 2. assemblers
 - 3. debuggers
 - C. Hardware environment.
 - 1. networking
 - 2. workstations
 - 3. peripheral devices
 - D. Assembly language overview.
 - 1. general syntax notation
 - 2. instruction categories

- 2. Data Types and Number System.
 - A. Numeric data.
 - 1. number system
 - a. binary, decimal, octal, hexadecimal
 - b. number system conversions
 - 2. arithmetic notation
 - a. binary, signed and unsigned
 - b. floating point
 - c. BCD
 - B. Character data.
 - 1. ASCII character set
- 3. Computer Architecture.
 - A. Microprocessors.
 - B. BUS.
 - C. Registers.
 - D. Memory.
 - E. Stack.
 - F. Peripheral device I/O (ports).
- 4. Instruction Set.
 - A. Addressing modes.
 - B. Data transfer instructions.
 - C. Software interrupt structure.
 - D. Arithmetic operations.
 - E. Control structures.
 - F. Stack operations.
 - G. String operations.
- 5. Peripheral Device Access.
 - A. Graphics displays.
 - B. Disk I/O.
 - C. Standard list device.

Assignment:

- 1. Read approximately 25 pages per week from textbook.
- 2. Prepare hierarchy charts and structured flowcharts.
- 3. Code, assemble, link and debug approximately 10 Assembly Language programs per semester.
- 4. Write documentation to accompany programs.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments and skill demonstrations are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, Exams, PROGRAMMING EXERCISES

Problem solving 20 - 40%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

LABORATORY PERFORMANCE

Skill Demonstrations 5 - 10%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion, SHORT ANSWER & PROGRAMMING

Exams 55 - 80%

Other: Includes any assessment tools that do not logically fit into the above categories.

OPTIONAL PROGRAMMING PROJECT

Other Category 0 - 0%

Representative Textbooks and Materials:

"Assembly Language for Intel-Based Computers, 3rd Edition, by Kip Irvine - Prentice Hall 1999