MATH 9 Course Outline as of Summer 2012

CATALOG INFORMATION

Dept and Nbr: MATH 9 Title: FINITE MATH
Full Title: Finite Mathematics
Last Reviewed: 3/13/2023

Units		Course Hours per Week	Nbr of Weeks		Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
	Contact Total	3.00		Contact Total	52.50	
					0	

Total Out of Class Hours: 105.00
Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable
Grading: Grade or P/NP
Repeatability: $\quad 00$ - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:

Catalog Description:

Sets, matrices, systems of equations and inequalities, linear programming, combinatorial techniques and probability, mathematics of finance, Markov chains, game theory.

Prerequisites/Corequisites:

Completion of MATH 154 or higher (VE)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Sets, matrices, systems of equations and inequalities, linear programming, combinatorial techniques and probability, mathematics of finance, Markov chains, game theory.
(Grade or P/NP)
Prerequisites/Corequisites: Completion of MATH 154 or higher (VE)
Recommended:
Limits on Enrollment:
Transfer Credit: CSU;UC.
ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

Certificate/Major Applicable:Major Applicable Course
COURSE CONTENT
Outcomes and Objectives:
Upon completion of the course, students will be able to:

1. Define sets and perform matrix operations.
2. Apply matrix methods of solving systems of equations.
3. Apply the fundamental counting principle, permutations, andcombinations to problems involving the Binomial Theorem andprobability.
4. Use expected value, conditional probability and Markov chains.
5. Apply graphical and simplex linear programming methods.
6. Apply compound interest, annuities, present value, sinking funds,amortization formulas.
7. Apply fundamentals of game theory.
Topics and Scope:
I. Discrete Methods
A. Introduction to sets
B. Matrices
8. Operations
9. Methods of solving systems of equations
C. Permutations
D. Combinations
E. Binomial Theorem
II. Probability
A. Counting techniques
10. Fundamental counting principle
11. Permutations
12. Combinations
B. Application of counting techniques to probability
C. Expected value
D. Conditional probability
E. Markov chain
III. Linear Programming
A. Graphical methods
B. Simplex methods
IV. Mathematics of Finance
A. Compound interest
B. Annuities
C. Present value
D. Sinking funds
E. Amortization
V. Game Theory
A. Fundamentals
B. Matrix methods
C. Linear programming methods

Assignment:

1. Daily reading outside of class (approximately $20-50$ pages per week).
2. Problem set assignments from required text(s), or supplementary materials chosen by the instructor (approximately 1-6 per week).
3. Quizzes (approximately $0-4$ per week).
4. Exams (approximately 3-8 per term).
5. Projects (for example, computer explorations or modeling activities, approximately $0-10$ per term).

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0-0\%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Homework problems

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice and free response exams; quizzes

Exams
70-95\%

Other: Includes any assessment tools that do not logically fit into the above categories.

```
Projects
```

Other Category
0-10\%

Representative Textbooks and Materials:

Finite Mathematics (4th ed.). Waner, Stefan and Constenoble, Steven. Brooks/Cole: 2007.
Finite Mathematics (11th ed.). Barnett, Raymond; Ziegler, Michael; Byleen, Karl. Prentice Hall: 2008.
Finite Mathematics (9th ed.). Lial, Margaret; Greenwell, Raymond; Ritchey, Nathan. Addison Wesley: 2007.

