SRJC Course Outlines

10/22/2020 5:36:12 PMSUSAG 50 Course Outline as of Fall 2005

Changed Course

Discipline and Nbr:  SUSAG 50Title:  INTRO SUSTAIN AGRI  
Full Title:  Introduction to Sustainable Agriculture
Last Reviewed:1/28/2019

UnitsCourse Hours per Week Nbr of WeeksCourse Hours Total
Maximum3.00Lecture Scheduled3.0017.5 max.Lecture Scheduled52.50
Minimum3.00Lab Scheduled010 min.Lab Scheduled0
 Contact DHR0 Contact DHR0
 Contact Total3.00 Contact Total52.50
 Non-contact DHR0 Non-contact DHR Total0

 Total Out of Class Hours:  105.00Total Student Learning Hours: 157.50 

Title 5 Category:  AA Degree Applicable
Grading:  Grade or P/NP
Repeatability:  00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As: 
Formerly:  SUSAG 100

Catalog Description:
Untitled document
Introduction to the concepts and principles of agroecology as applied to the design and management of sustainable agricultural systems. Includes an examination of case studies to connect sustainable agriculture principles to actual farming practices.


Recommended Preparation:
Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information
Description: Untitled document
Introduction to the concepts and principles of agroecology as applied to the design and management of sustainable agricultural systems. Includes an examination of case studies to connect sustainable agriculture principles to actual farming practices.
(Grade or P/NP)

Recommended:Eligibility for ENGL 100 or ESL 100
Limits on Enrollment:
Transfer Credit:CSU;
Repeatability:00 - Two Repeats if Grade was D, F, NC, or NP


Associate Degree:Effective:Fall 2005
Natural Sciences
CSU GE:Transfer Area Effective:Inactive:
 B1Physical ScienceFall 2019
IGETC:Transfer Area Effective:Inactive:
CSU Transfer:TransferableEffective:Fall 2005Inactive:
UC Transfer:Effective:Inactive:

Certificate/Major Applicable: Both Certificate and Major Applicable


Outcomes and Objectives:
Upon completion of the course, students will be able to:
Untitled document
Upon successful completion of this course the student will be able to:
1. Relate the methods of scientific investigation to agricultural
2. Define the nature of scientific inquiry.
3. Describe the values, themes, methods, and history of sustainable
agriculture regionally and worldwide.
4. Define sustainable agriculture.
5. Describe the characteristics of a natural ecosystem.
6. Compare and contrast the properties of natural ecosystems, sustainable
agroecosystems, and conventional agroecosystems.
7. Evaluate the role of soil fertility in an ecological production system.
8. Discuss the principles and strategies of sustainable agriculture.
9. Optimize the use of water to promote an ecological use of resources.
10. Summarize the ecological roles of plants and their functional
relationships to an agroecosystem.
11. Assess an agroecosystem for its level of sustainability based on
indicators of a sustainable system.
12. Prescribe ways of converting to a sustainable system through the
redesign of a conventional agroecosystem.
13. Identify career opportunities and objectives in sustainable

Topics and Scope
Untitled document
I. Introduction to Agroecology and Sustainable Agriculture
 A. What is sustainable agriculture?
 B. Terms related to sustainability
 C. Common themes of sustainable agriculture
 D. The three "E's of sustainability
    1. Economic viability
    2. Environmental health
    3. Equity (social)
II. Concepts of Agroecology and Sustainability
 A. Agroecology as a science
    1. The nature of scientific inquiry
    2. Application of the scientific method to problem solving
    3. Ecological imperative for sustainable agriculture
    4. Global impacts of sustainable agriculture
 B. Ecosystem characteristics
     1. Natural ecosystems
     2. Sustainable agroecosytems
     3. Conventional agroecosystems
 C. Ecological Principles
     1. Niche
     2. Succession
     3. Biological diversity
     4. Applications of niche theory to agriculture
 D. Steps in the ecological design process
     1. Observation
     2. Visioning
     3. Planning
     4. Development
     5. Implementation
 E. Natural patterns in the garden
III. History of Sustainable Agriculture
 A. Worldwide
 B. United States
    1. 1980 - 1990
    2. 1990- present
 C. Regionally
 D. Advent of modern agriculture
 E. Modern agriculture in crisis
 F. Why conventional agriculture is not sustainable
 G. Barriers to Developing Agricultural Sustainability
   1. Ecological
   2. Social
   3. Economic
IV. Principles of Sustainable Agriculture
 A. Soil fertility and nutrient cycling
 B. Enhancing and maintaining biological diversity
 C. Integrated pest management (IPM)
 D. Input reduction
 E. Water management
 F. Conservation of natural resources
 G. Ecosystem (agroecosystem) management
 H. Benefits of a sustainable agroecosystem
     1. Genetic diversity
     2. Productivity
     3. Resilience
     4. Low reliance on external input
V. Achieving Sustainability
 A. Learning from existing agroecological systems
   1. Biological agriculture
   2. Nature farming
   3. Organic agriculture
   4. Biodynamic agriculture
   5. Permaculture
 B. Converting to sustainable practices
VI. Specific Strategies
 A. Soil fertility & nutrient cycling
   1. Healthy soil is a key component of sustainability
   2. Soil as a "living" medium
      a. Soil minerals
      b. Macro and micro nutrients
      c. Signs of nutrient deficiency
 B. Soil fertility
   1. Physical properties of soil
   2. Methods to protect and enhance soil microbiology and productivity
      a. Regular additions of organic matter
         i. humus
         ii. compost and/or manures
         iii. mulch
         iv. cover cropping for fertility
      b. Regular soil testing and analysis
      c. Cover cropping for fertility
      d. Reduced tillage
      e. Avoid traffic on wet soils
 C. Water management
    1. Use of water in agriculture
      a. Ecology of irrigation
      b. Optimizing use of the water resource
    2. Water in the soil
      a. Soil moisture
      b. Water holding capacities
         i. saturation
         ii. field capacity
         iii. wilting point
    3. Water-conserving methods
      a. High organic matter content
      b. Deep mulching
      c. Water-conserving plants
      d. Dense planting
      e. Soil contouring
         i. swales
         ii. contours
    4. Water catchment
      a. Harvest and storage of rainwater
      b. Using greywater
 E. Enhancing and maintaining biological diversity
   1. Plants uses
     a. Multipurpose plants
     b. Ecological roles of plants
         i. mulch makers
         ii. nutrient accumulators
         iii. nitrogen fixers
         iv. soil fumigants and pest repellants
         v. insecting plants
         vi. spike roots
         vii. wildlife nurturers
         viii. shelterbelters
   2. Annuals and perennials
      a. Perennial vegetables
      b. Herbs
      c. Greens
   3. Roots and tubers
   4. Microclimates
   5. Plant communities
      a. Interplanting /intercropping
      b. Polyculture
      c. Plant guilds
      b. Habitat strips and hedgerows
 F. Integrated pest management (IPM)
   1. Attracting beneficial insects
      a. Predatory insects
      b. Parasitic insects
      c. Pollinators
      d. Weed feeders
   2. Attracting birds
      a. Food
      b. Water
      c. Shelter
      d. Protection
      e. Habitat diversity
   3. Use of other animals
      a. Chickens
      b. Ducks
      c. Rabbits
      d. Other livestock species
 G. Input reduction (efficient use of inputs)
   1. Maximize reliance on natural, renewable and on-farm inputs
   2. Not simple input substitution
   3. Assess situations where the use of synthetic chemicals would be
      more "sustainable"
   4. Goal: develop efficient, biological systems which do not need high
      levels of material inputs
 H. Conservation of natural resources
   1. Wildlife habitat
   2. Energy
   3. Air
 I. Ecosystem (agroecosystem) management
 J. Animal Husbandry
   1. Variety selection and animal reproduction
   2. Select appropriate stock for farm or ranch resources
   3. Grazing and range management
   4. For herd health and productivity
   5. For environmental quality
   6. For biodiversity conservation
   7. Integrating crop and livestock production
   8. National Organic Program (NOP) standards
VII. Case Studies
 A. National perspective
 B. Local case studies
VIII. Career Opportunities in Sustainable Agriculture

Untitled document
Representative assignments may include and may not be limited to:
1. Specific reading and study assignments from texts, handouts, and
internet sites (15-30 pages per week).
2. Applications of scientific method that may include:
 a. analyze agricultural productivity in conventional vs. sustainable
    systems and write a 2-3 page report on findings
 b. formulate and test hypotheses regarding soil fertility in a
    production system
 c. evaluate scientific testing of the effects of cover crops or
 d. evaluate and compare conventional vs. organic system field trials
     (based on field trips to Shone Farm Vineyard)
3. Develop a soil fertility enhancement plan (2-3 pages).
4. Prepare a written evaluation of a local farm's level of sustainability,
using the indicators of a sustainable system (3-5 pages).
5. Conduct interviews with farmers for case studies.
6. Write 2-3 case studies based on interviews, 3-5 pages each.
7. Quizzes, midterm, final exam.

Methods of Evaluation/Basis of Grade.
Writing: Assessment tools that demonstrate writing skill and/or require students to select, organize and explain ideas in writing.Writing
30 - 40%
Field notes/journal; field trip reports; evalu.
Problem solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.Problem Solving
20 - 30%
test hypotheses; cover crop eval.; field trials.
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.Skill Demonstrations
0 - 0%
Exams: All forms of formal testing, other than skill performance exams.Exams
30 - 40%
Multiple choice, True/false, Completion
Other: Includes any assessment tools that do not logically fit into the above categories.Other Category
0 - 0%

Representative Textbooks and Materials:
Untitled document
Ecological Principles in Agriculture. Powers, Laura E. and McSorely,
Robert. Delmar, 2000.
Agroecology: Ecological Processes in Sustainable Agriculture. Gliessman,
Stephen R. Sleeping Bear Press, 1998.
Gaia's Garden: A Guide to Home-Scale Permaculture. Hemenway, Toby. Chelsea
Green Publishing Co., 2000.

Print PDF