MATH 1C— CALCULUS, THIRD COURSE —FALL SEMESTER 2025 Section 3233, Lindley 261, 6:00pm-8:00pm TTh, 4 Units

Instructor: Mark Ferguson. Office: Kunde Hall, Room 211. Email: mferguson@santarosa.edu

- Office Hours: 8:15 pm—9:15 pm MW in Lindley 204, 7:50 pm—8:50 pm Tuesday in Lindley 261
- Canvas is not used in our class.
- Email will be checked on normal class days.
- Unauthorized use of smart device/computer during class → points deduction.

Course Description

Calculus, Third Course: Multivariable calculus including partial differentiation and multiple integration, vector analysis including vector fields, line integrals, surface integrals, and the theorems of Green, Gauss and Stokes.

Course Outline of Record

This is available online and contains the student learning outcomes: go to the SRJC homepage and search for MATH 1C under the course outlines link.

Assignment Structure

Activity	Points	Your	Your	Cumulative	Your
	Possible	Points	Cumulative	Points	Cumulative
			Points	Possible	Percentage
Exam #1, Thursday of Week 6	100			100	
Exam #2, Thursday of Week 12	100			200	
Exam #3 Thursday of Week 16	100			300	
Problem Solving	100			400	
Final Exam Tuesday, December 16, 2025 6:00 PM - 8:45 PM	200			600	

MATH 1C— CALCULUS, THIRD COURSE —FALL SEMESTER 2025 Section 3233, Lindley 261, 6:00pm-8:00pm TTh, 4 Units

Grading Policy

Graded exams may be discussed at least 48 hours after they have been returned to you. Letter grades will be assigned on a scale no stricter than the following:

Letter Grade	Percentage		
Α	90 to 100		
В	80 to 89		
С	70 to 79		
D	60 to 69		
F	0 to 59		

Exams (3 at 100 points each) can only take early

These will be taken in our classroom. You will be notified of the exam topics and the materials you can use on the exams about one week prior to each exam. These exams may only be taken at a different time with advanced notice and must be taken prior to the original scheduled date. Exams are usually graded and returned no later than one week of the exam date. Students are asked to review their graded exams and wait at least 48 hours to discuss questions and ask for further feedback on graded exams.

Note 1: You may replace your lowest exam score with the final exam percentage, as long as your scores on original exams 1, 2, and 3 were all at least 50% and were all taken during original exam time.

Note 2: in case of an emergency immediately before (only) one of these exams that causes you to miss an exam, it is possible to use a portion of your Final Exam score to count as your score for the missed exam (only the topics on the Final Exam, as determined by me, that are associated with the exam that you missed), provided that:

- Sans the exam you miss, you have a passing grade going into the Final Exam.
- You have regular attendance and have been providing a good faith effort in our class, as determined by me.

Please note that the distribution of points according to topics may be different on your Final Exam as opposed to the typical Final Exam (below).

Final Exam (200 points)

Be prepared for a mostly cumulative final exam. It will be written to take about 2.5 hours and will be given at the College-designated time. You will be notified of the exam topics and the materials you can use on the final prior to the final. The final exam can only be taken at a different time with advanced notice and must be taken prior to the original scheduled date. Final exams are not returned to the students; however, you are welcome to come by during the following semester to review your final exam.

Note: in case of an emergency immediately before the Final Exam, it is possible to take an Incomplete Grade for the class, provided that you have a passing grade going into the Final Exam, and take the Final Exam during a subsequent semester.

Reading and Lecture Schedule (Note that the schedule is ideal. Our actual pace may cause us to run a little behind or ahead of the ideal schedule throughout the semester)

Week	Date (Week Beginning Monday)	Section Number and Title from Our Text. Read these sections before they	
Number		are covered; homework will be issued in class.	
		14.1: Functions of Several Variables	
1	August 18	14.2: Limits and Continuity	
2	August 25	14.3: Partial Derivatives	
		14.4: Tangent Planes and Linear Approximations	
3	September 1	14.5: The Chain Rule	
		Monday No Classes—Labor Day Holiday	
		14.6: Directional Derivatives and the Gradient Vector	
4	September 8	14.7: Maximum and Minimum Values	
5	September 15	14.8: Lagrange Multipliers	
		15.1: Double Integrals over Rectangles	
6	September 22	Exam 1 Thursday	
		15.2: Double Integrals over General Regions	
7	September 29	15.3: Double Integrals in Polar Coordinates	
		15.4: Applications of Double Integrals	
8	October 6	15.6: Triple Integrals	
9	October 13	15.7: Triple Integrals in Cylindrical Coordinates	
		15.8: Triple Integrals in Spherical Coordinates	
		15.9: Change of Variables in Multiple Integrals	
10	October 20	16.1: Vector Fields	
		16.2: Line Integrals	
11	October 27	16.3: The Fundamental Theorem for Line Integrals	
		16.4: Green's Theorem	
12	November 3	Exam 2 Thursday	
		16.5: Curl and Divergence	
13	November 10	Tuesday No Classes—Vet's Day Holiday	
14	November 17	16.6: Parametric Surfaces and Their Areas	
		16.7: Surface Integrals	
15	November 24	Thurs. No ClassesThanksgiving	
		16.8: Stokes' Theorem	
16	December 1	Exam 3 Thursday	
17	December 8	16.9: The Divergence Theorem	
		Final Exam Tuesday, December 16, 2025	
Finals	December 15	6:00 PM - 8:45 PM	