CATALOG INFORMATION

Dept and Nbr: CHEM 60 Title: GEN ORG BIOL CHEM
Full Title: General, Organic and Biological Chemistry
Last Reviewed: 5/9/2022

Units		Course Hours per Week	Nbr of Weeks			Course Hours Total
Maximum	5.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	5.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	7.00		Contact Total	122.50
				Non-contact DHR	0	

Total Out of Class Hours: 140.00
Total Student Learning Hours: 262.50

Title 5 Category: AA Degree Applicable
Grading: Grade or P/NP
Repeatability: $\quad 00$ - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:

Catalog Description:

In this course, students will study basic concepts of general, organic and biological chemistry.
This course is appropriate for nursing and related majors that require one semester of chemistry.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for MATH 150 or equivalent AND eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: In this course, students will study basic concepts of general, organic and biological chemistry. This course is appropriate for nursing and related majors that require one semester of chemistry. (Grade or P/NP)
Prerequisites/Corequisites:
Recommended: Eligibility for MATH 150 or equivalent AND eligibility for ENGL 100 or ESL 100
Limits on Enrollment:

Transfer Credit: CSU;
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

1. Recognize and apply the underlying chemical foundations of medicine and life.
2. Correlate microscopic and macroscopic behavior of matter.
3. Solve quantitative problems relating to chemical principles.
4. Safely use basic equipment to observe and measure chemical and physical properties in the laboratory.

Objectives:

At the conclusion of this course, the student should be able to:

1. Recognize the structures and functional groups of lipids, carbohydrates, proteins, and nucleic acids.
2. Demonstrate a basic understanding of organic reactions.
3. Recognize the importance of chemistry in health care and society.
4. Explain bulk properties of gases from a molecular scale perspective.
5. Relate intermolecular forces to physical properties of substances.
6. Draw Lewis structures and relate them to isomerism and molecular geometry.
7. Calculate quantities related to concentrations of solutions.
8. Use moles and mole ratios to calculate quantities in reactions.
9. Assemble and handle appropriate lab equipment effectively and safely.
10. Develop skills of observation, recordkeeping, and lab notebook maintenance.
11. Interpret observations using chemical principles.

Topics and Scope:

Lecture-Related Topics \& Scope:
I. Atomic Theory
A. Structure of the atom
B. Organization of the periodic table
C. Ions
D. Mole concept
II. Laboratory Measurements and Calculations
III. Chemical Bonding and Molecular Structure
A. Ionic compounds
B. Covalent compounds
C. Organic structures and functional groups
D. Isomerism and stereochemistry
IV. Chemical Reactions
A. Balancing reactions
B. Basic organic reactions
C. Simple acid-base reactions
D. Le Chatelier's principle
E. Reaction mechanisms and associated energy changes
V. Matter at the Sub-microscopic Level
A. Gases, liquids, and solids
B. Qualitative atomic theory of gases
C. Intermolecular forces
VI. Solutions
A. Measures of concentration
B. Diffusion, osmosis, and dialysis
C. pH and buffers
VII. Biological Molecules
A. Lipids
B. Carbohydrates
C. Amino acids and peptides
D. Proteins
E. Nucleic acids
VIII. Metabolism

Lab-Related Topics \& Scope:
Lab material will be chosen each semester to supplement or reinforce most of the topics above, and may include:
I. Measurements, Metric System, and Conversions
II. Lewis Structures and Molecular Geometry
III. Reactions and Observations
IV. Gases
V. Stoichiometry
VI. Diffusion, Osmosis, and Dialysis
VII. Solutions
VIII. Lipids
IX. Acids, Bases, and Buffers
X. Carbohydrates
XI. Amino Acids
XII. Enzymes
XIII. Lab Skill Evaluation

Assignment:

1. Reading ($1-2$ chapters per week)
2. Homework assignments (0-16)
3. Laboratory reports (11-16)
4. Exams (3-5) and final exam
5. Quiz(zes) (0-8)

All topics are covered in the lecture and lab portions of the course.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Laboratory reports
Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Homework assignments
Problem solving

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Quiz(zes) and exams
Other: Includes any assessment tools that do not logically fit into the above categories.

Class and laboratory participation

0-15\%

Skill Demonstrations 0-0\%

```
Writing 20-35\%
```

