ENGR 6 Course Outline as of Summer 2021

CATALOG INFORMATION

Dept and Nbr: ENGR 6 Title: MATLAB FOR ENGINEERS Full Title: Programming in MATLAB for Engineers Last Reviewed: 12/12/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Engineering problem solving using the MATLAB computer programming environment. It introduces the fundamentals of procedural and object-oriented programming, numerical analysis, and data structures. Students outline, write, test, and debug computer programs to solve engineering, physics, and mathematics problems and display results.

Prerequisites/Corequisites:

Completion of MATH 1A or higher (MATH)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Engineering problem solving using the MATLAB computer programming environment. It introduces the fundamentals of procedural and object-oriented programming, numerical analysis, and data structures. Students outline, write, test, and debug computer programs to solve engineering, physics, and mathematics problems and display results. (Grade or P/NP) Prerequisites/Corequisites: Completion of MATH 1A or higher (MATH) Recommended: Limits on Enrollment: Transfer Credit: CSU;UC. Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	L		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	l		Effective:	Inactive:
CSU Transfer	:Transferable	Effective:	Fall 2000	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 2000	Inactive:	

CID:

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Apply standard programming techniques to write, test, and debug MATLAB computer programs that complete engineering-related tasks.
- 2. Apply common numerical analysis techniques in MATLAB to analyze data from engineering-related problems.
- 3. Apply programming and collaboration skills to the completion of a group project with partially defined parameters.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Utilize methodical approaches to develop computer algorithms that perform engineering-related tasks.
- 2. Create, test, and debug sequential MATLAB programs to perform those tasks.
- 3. Solve engineering-related computational problems by applying common numerical analysis techniques and MATLAB engineering tools.
- 4. Create computer programs to analyze and visualize data with tables, charts, and graphs.
- 5. Demonstrate understanding and use of standard data structures and object-oriented programming techniques.
- 6. Document computer programs in a careful and complete manner in order to facilitate editing by another programmer.

Lab objectives (in addition to the objectives above):

- 7. Develop solution algorithms in a project-based environment with only partially defined project parameters.
- 8. Practice collaborative problem solving and project management skills including peer review and evaluation.
- 9. Develop oral presentation skills.

Topics and Scope:

- I. Overview of Computer Systems and the MATLAB Environment
 - A. Compiled vs. interpreted languages
 - B. Procedural vs. object-oriented programming
 - C. MATLAB's interactive workspace
 - D. MATLAB's documentation and help features
- II. Basic Interpreted Code
 - A. Variables
 - **B.** Expressions
 - C. Precedence of operations
- III. Elementary Functions
 - A. Math functions
 - B. Logical functions
 - C. Referencing functions
- IV. Arrays
 - A. Assigning
 - B. Indexing
 - C. Operations
- V. Computational Problem-Solving Methodologies
 - A. Problem definition and specifications
 - B. Input and output information and variables
 - C. Working a special case by hand
 - D. Design and implementation of computer algorithm
 - E. Test of algorithm
- VI. Algorithm and Coding Practices
 - A. Pseudocode
 - B. Flowcharts
 - C. Comments and documentation blocks
- VII. Formatted Input and Output
 - A. Input function
 - B. Menu function
 - C. Disp function
 - D. Format strings
- VIII. File Management
 - A. MATLAB data files
 - B. MATLAB program files
 - C. MATLAB object files
 - D. MATLAB figure files
 - E. Non-MATLAB file reading

IX. Graphical Display

- A. Independent variable set-up in 1 and 2 dimensions
- B. Two-dimensional plotting
- C. Three-dimensional surface plots
- D. Plot annotation expectations
- E. Manual annotation options
- F. Annotation functions
- X. Selection Programming Structures
 - A. Relational and logical operators and functions
 - B. If statements with else & elseif
 - C. Switch-case construction

XI. Repetition Programming Structures

- A. For loops
- B. While loops
- XII. Functions
 - A. User-defined functions
 - B. Multiple input and output functions
 - C. Function handles
 - D. Random functions
 - E. MATLAB's numerical analysis functions
- XIII. Recursion
- XIV. Data Types
 - A. Strings and character arrays
 - B. Cell arrays
 - C. Structured arrays
 - D. Logical arrays
 - E. Graphical objects
 - F. User data structures
- XV. Sorting and Searching
 - A. Bubble sort
 - B. Insertion sort
 - C. Lookup techniques
- XVI. Object-Oriented Programming
 - A. Concepts
 - B. Terminology
 - C. Properties
 - D. Methods
- XVII. Graphical User Interfaces
 - A. MATLAB's graphical user interface objects
 - B. Object generation and parameter modification
 - C. Graphical user interface activation
- XVIII. Numerical Analysis Techniques
 - A. Linear system solutions
 - B. Vector analysis
 - C. Data interpolation
 - D. Least-squares regression and linearization
 - E. Numerical differentiation and integration
 - F. Solving ordinary differential equations
 - G. Series approximation and error
 - H. Solving equations in one variable
 - I. Optimization
 - J. Simulation

Lab Topics and Scope (in addition to the topics above):

XIX. Interfacing to the External Environment

XX. Group Interaction Skills and Peer Review and Evaluation

XXI. Presentation Skills

Assignment:

Lecture Related Assignments:

- 1. Reading (15 pages per week)
- 2. Homework assignments using MATLAB (15-25)

3. Objective examinations (2-4) and a final

Lab Related Assignments:

- 1. Lab exercises using MATLAB (10-15)
- 2. Group projects including presentations (1-3)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework Assignments, Lab Exercises, Group Projects

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Exams and Final

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Representative Textbooks and Materials:

MATLAB an Introduction with Applications. 5th ed. Gilat, Amos. Wiley. 2015 Introduction to MATLAB. Knoesen, Andrea. Zybook. 2016 Introduction to MATLAB for Engineers. 3rd ed. Palm, William. McGraw-Hill. 2011 (classic)

,	
	Writing 0 - 0%
	Problem solving 40 - 70%
1	
	Skill Demonstrations 0 - 0%
	Exams 30 - 60%
	Other Category 0 - 0%