MATH 5 Course Outline as of Fall 2021

CATALOG INFORMATION

Dept and Nbr: MATH 5 Title: INTRO TO LINEAR ALGEBRA Full Title: Introduction to Linear Algebra Last Reviewed: 2/8/2021

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	4.00	17.5	Lecture Scheduled	70.00
Minimum	4.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 140.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

An introduction to linear algebra including the theory of matrices, determinants, vector spaces, linear transformations, eigenvectors, eigenvalues and applications.

Prerequisites/Corequisites: Completion of MATH 1B or higher (MATH)

Recommended Preparation: Concurrent enrollment in MATH 1C or MATH 2

Limits on Enrollment:

Schedule of Classes Information:

Description: An introduction to linear algebra including the theory of matrices, determinants, vector spaces, linear transformations, eigenvectors, eigenvalues and applications. (Grade Only) Prerequisites/Corequisites: Completion of MATH 1B or higher (MATH) Recommended: Concurrent enrollment in MATH 1C or MATH 2 Limits on Enrollment: Transfer Credit: CSU;UC. Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	I		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	: Transferable	Effective:	Spring 1989	Inactive:	
UC Transfer:	Transferable	Effective:	Spring 1989	Inactive:	

CID:

CID Descriptor:MATH 250	Introduction to Linear Algebra
SRJC Equivalent Course(s):	MATH5

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Determine the dimensions of a variety of vector spaces.
- 2. Find eigenvalues, eigenvectors and eigenspaces of matrices and linear transformations.
- 3. Determine matrix representations of linear transformations and linear operators.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Solve systems of linear equations using Gauss-Jordan elimination, matrix inverses and Cramer's rule.
- 2. Define matrix operations, invertibility, elementary matrices and orthogonal matrices.
- 3. Use properties of determinants including row reduction to evaluate determinants.
- 4. Invert matrices using adjoints and cofactors.
- 5. Define vector spaces, subspaces, span, linear independence, bases, dimension, inner product spaces, and orthonormal bases.
- 6. Determine the nullspace or kernel and range of a matrix and linear transformation.
- 7. Determine the injectivity and surjectivity of linear transformations and linear operators.
- 8. Define and determine dimension, rank and nullity of a matrix.
- 9. Determine the matrix representation of a linear transformation using different bases and using change of basis.
- 10. Determine eigenvalues, eigenvectors and eigenspaces of matrices and linear transformations.
- 11. Apply proof writing techniques to prove basic results in linear algebra.
- 12. Utilize methods of linear algebra to solve application problems selected from science, engineering, and related fields.

Topics and Scope:

I. Vectors

- A. Review of vectors in 2- and 3-dimensional real space
- B. Vectors in n-dimensional real space

- C. Properties of vectors in n-dimensional real space, including dot product, norm of a vector, angle between vectors, and vector orthogonality
- II. Matrices
 - A. Systems of linear equations
 - B. Gauss-Jordan elimination
 - C. Operations on matrices, including the transpose
 - D. Invertibility
 - E. Triangular matrices
 - F. Elementary matrices
 - G. Orthogonal matrices
- III. Determinants
 - A. Properties
 - B. Evaluation by row reduction
 - C. Cofactors and adjoints
 - D. Formula for inverse of a matrix
 - E. Cramer's rule
- IV. Real Vector Spaces
 - A. Defining properties
 - B. Subspace
 - C. Span
 - D. Linear independence
 - E. Basis
 - F. Dimension
 - G. Rank
 - H. Solution space of a system of linear equations
 - I. Inner product spaces
 - J. Orthonormal bases
 - K. Gram-Schmidt process
- V. Linear Transformations
 - A. Kernel
 - B. Range
 - C. Rank and nullity
 - D. Matrix representation of linear transformation
 - E. Similarity
 - F. Change of basis
 - G. One-to-one and onto
- VI. Eigenvectors and Eigenvalues
 - A. Characteristic equations
 - B. Eigenspaces
 - 1. Diagonalization of matrices
 - 2. Orthogonal diagonalization of symmetric matrices
- VII. Proofs applied to:
 - A. Linear independence of vectors
 - B. Properties of subspaces
 - C. Linearity, injectivity and surjectivity of transformations
 - D. Properties of eigenvectors and eigenvalues
 - E. Vector spaces and subspaces
- VIII. Applications including at least two of the following:
 - A. Differential equations
 - B. Fourier series
 - C. Quadratic forms
 - D. Gauss-Seidel method

- E. Partial pivoting
- F. Eigenvalues, eigenvalue approximations and eigenvectors
- G. Markov chains
- H. Computer graphics
- I. Graph theory networks
- J. Dynamical systems
- K. Cryptography
- L. Least squares techniques
- M. Recurrence relations
- N. Balancing chemical equations
- O. Leontief input-output model
- P. QR decomposition
- Q. Rotated conic sections
- IX. Technology Computer Algebra Systems

Assignment:

- 1. Reading outside of class (5-50 pages per week)
- 2. Problem sets (15-30)
- 3. Midterm exams (2-5), quiz(zes) (0-20) and final exam
- 4. Project(s) (0-5), such as: computer labs, term projects, group projects

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course. Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Problem sets

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Exams and quizzes

Other: Includes any assessment tools that do not logically fit into the above categories.

Problem solving 5 - 20%

Skill Demonstrations 0 - 0%

> Exams 80 - 95%

Project(s)

Other Category 0 - 10%

Representative Textbooks and Materials: Elementary Linear Algebra. 12th ed. Anton, Howard. Wiley. 2018 Linear Algebra and Its Applications. 5th ed. Lay, David C. Pearson. 2016 (classic)