PHYS 42 Course Outline as of Spring 2021

CATALOG INFORMATION

Dept and Nbr: PHYS 42Title: ELECTRICITY & MAGNETISMFull Title: Electricity and Magnetism for Scientists and EngineersLast Reviewed: 9/26/2022

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	8	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	PHYS 4C

Catalog Description:

This is a course intended for science and engineering students and will include electricity, magnetism and electromagnetic waves.

Prerequisites/Corequisites:

Completion of PHYS 40 or higher (V5) and Course Completion or Current Enrollment in MATH 1C

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: This is a course intended for science and engineering students and will include electricity, magnetism and electromagnetic waves. (Grade Only) Prerequisites/Corequisites: Completion of PHYS 40 or higher (V5) and Course Completion or Current Enrollment in MATH 1C Recommended: Limits on Enrollment:

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area C Transfer Area B1 B3	Natural Science Physical Science Laboratory Act	ce	Effective: Fall 1983 Effective: Fall 1983	Inactive: Inactive:
IGETC:	Transfer Area 5A 5C	Physical Sciences Fulfills Lab Requirement		Effective: Fall 1983	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 1983	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1983	Inactive:	

CID:

CID Descriptor:PHYS 200S
SRJC Equivalent Course(s):Calculus-Based Physics for Scientists and Engineers: ABC
PHYS40 AND PHYS41 AND PHYS42 AND PHYS43
Calculus-Based Physics for Scientists and Engineers: B
PHYS42SRJC Equivalent Course(s):PHYS42

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

1. Apply laws of physics to analyze and solve problems related to electromagnetism and circuits.

- 2. Design and assemble apparatuses to measure electromagnetic phenomena.
- 3. Analyze and make meaningful comparisons between experiment and theory.
- 4. Effectively communicate principles and processes of electromagnetism and circuits.

Objectives:

In order to achieve these learning outcomes, during the course the students will:

- 1. Define and solve problems related to static electric fields and forces.
- 2. Use Gauss's law to solve problems involving charged conductors and insulators.
- 3. Define and calculate the electric potential for point charges and charged conductors and insulators.
- 4. Obtain the electric field from an electric potential.
- 5. Calculate the capacitance of capacitors with and without dielectrics.
- 6. Solve problems related to current, resistance, electrical power and Ohm's law.
- 7. Use Kirchhoff's rules to analyze direct current (DC) circuits.
- 8. Define and solve problems related to the properties of magnetic fields and forces.
- 9. Use the Biot-Savart and Ampere's laws to calculate the magnetic field produced by currents. 10. Use Faraday's law of induction to calculate motional emf.
- 11. Analyze resistors, inductors and capacitors in alternating current (AC) circuits using

equations and phasors.

- 12. Solve problems related to the design of transformers and power transmission.
- 13. Describe Maxwell's equations and the properties of electromagnetic waves.
- 14. Solve problems related to electromagnetic waves.

Lab Objectives:

- 1. Develop and conduct experiments that apply the scientific method and error analysis to explore principles in static electricity, AC/DC circuits, electronic components and magnetism.
- 2. Use manual and computerized data collection techniques to measure and analyze parameters related to electricity and magnetism.
- 3. Plot, curve fit, and interpret data using a spreadsheet or other analysis tools.

Topics and Scope:

- 1. Electric Field
 - a. Electric charges and field lines
 - b. Coulomb's law
 - c. Electric field of continuous charges
 - d. Motion of charged particle in electric field
- 2. Gauss's Law
 - a. Electric flux
 - b. Calculation electric field using the Gauss's law
 - c. Conductors in electrostatic field
- 3. Electric Potential
 - a. Potential difference in a uniform electric field
 - b. Electric potential of point charge and charged conductor of various simple geometries
 - c. Finding electric field from electric potential
- 4. Dielectrics
 - a. Capacitances
 - b. Combinations of capacitances
 - c. Energy stored in capacitors
 - d. Electric dipole
- 5. Current and Resistance
 - a. Electric current, resistance and effect of temperature
 - b. Conductivity and resistivity
 - c. Electrical power
- 6. DC Circuits
 - a. Batteries and emf
 - b. Resistors in series and parallel
 - c. Kirchhoff's rules
 - d. RC circuits
- 7. Magnetic Field
 - a. Magnetic force on a moving charge and its applications
 - b. Magnetic force on a current carrying conductor
 - c. Torque on a current loop in a uniform magnetic field
 - d. Hall effect
- 8. Sources of Magnetic Field
 - a. Biot-Savart law
 - b. Ampere's law
 - c. Magnetic field of currents flowing in straight wires, solenoid, toroid and sheets
 - d. Gauss's law in magnetism

e. Magnetic materials and magnetic field of the Earth

9. Faraday's Law

a. Motional emf

- b. Lenz's law
- c. Induced emf, generators and motors
- d. Eddy current
- 10. Inductance
 - a. Self inductance, inductors and mutual inductance
 - b. RL circuits
 - c. Stored energy in a magnetic field
 - d. Oscillation in LC and RLC circuits
- 11. AC Circuits
 - a. Resistors, inductors and capacitors in AC circuits
 - b. Phasors
 - c. Series RLC circuit
 - d. Power in AC circuits
 - e. Transformers and power transmission
- 12. Electromagnetic Waves
 - a. Poynting's vector
 - b. Maxwell's equations
 - c. Plane electromagnetic waves
 - d. Polarization of light
 - e. Energy carried and pressure exerted by electromagnetic waves
 - f. Electromagnetic spectrum

All topics are covered in both the lecture and lab parts of the course.

Assignment:

Lecture Related Assignments:

- 1. Homework problem sets (10-30)
- 2. Quizzes (5-15)
- 3. Mid-term exams (2-4)
- 4. Final exam

Lab- and Lecture-Related Assignments: 1. Laboratory experiments and reports (12-16)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written lab reports

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problem sets; Laboratory experiments

Writing 5 - 20%

Problem solving
10 - 30%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

1		
None		Skill Demonstrations 0 - 0%
Exams: All forms of formal testing, other than skill performance exams.		
Objective examinations, quizzes, mid-terms, final		Exams 40 - 70%
Other: Includes any assessment tools that do not logically fit into the above categories.	_	
Participation and attendance		Other Category 0 - 10%

Representative Textbooks and Materials:

Physics For Scientists And Engineers. 10th ed. Serway, Raymond and Jewett, John. Cengage L. 2018