ELEC 54A Course Outline as of Summer 2019

CATALOG INFORMATION

Dept and Nbr: ELEC 54A Title: DC AND AC THEORY

Full Title: Direct and Alternating Current Theory

Last Reviewed: 5/8/2023

Units		Course Hours per Week	S	Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.00	17.5	Lecture Scheduled	35.00
Minimum	3.00	Lab Scheduled	3.00	8	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	5.00		Contact Total	87.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 70.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Introduction to electronic components and underlying physics concepts, electrical units, direct current (DC), DC circuit analysis, batteries, magnetism, meters, alternating current (AC), capacitance, inductance, transformers, and AC circuit analysis.

Prerequisites/Corequisites:

Completion of ELEC 51A or

Completion of an algebra-based Math course (MATH 150B, MATH 150, MATH 151, OR MATH 154 or higher (MATH));

See Student Success & Assessment Services for more information about the assessment process

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100

Limits on Enrollment:

Schedule of Classes Information:

Description: Introduction to electronic components and underlying physics concepts, electrical units, direct current (DC), DC circuit analysis, batteries, magnetism, meters, alternating current (AC), capacitance, inductance, transformers, and AC circuit analysis. (Grade Only)

Prerequisites/Corequisites: Completion of ELEC 51A or

Completion of an algebra-based Math course (MATH 150B, MATH 150, MATH 151, OR

MATH 154 or higher (MATH));

See Student Success & Assessment Services for more information about the assessment process

Recommended: Eligibility for ENGL 100 or ESL 100

Limits on Enrollment: Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 2016 Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Identify and describe the characteristics of common electronic components.
- 2. Analyze and measure the characteristics of typical DC and AC circuits.
- 3. Use algebra and right angle trigonometry to solve electronic circuit calculations.

Objectives:

During this course students will:

- 1. Use algebraic functions, signed numbers and metric notations, make circuit calculations using Ohm's Law, Watt's Law and Kirchoff's Laws.
- 2. Use algebraic expressions and numerical representations to analyze and evaluate series, parallel, and series-parallel circuits.
- 3. Summarize the basic characteristics of magnetism.
- 4. Identify alternating current (AC) units.
- 5. Use signed numbers to calculate values in an AC resistive circuit.
- 6. Identify and describe the characteristics of capacitors, inductors and transformers using trigonometric functions.
- 7. Analyze and evaluate resistor-capacitor (RC), resistor-inductor (RL) and resistor-inductor-capacitor (RLC) circuits through the application of right angle trigonometry and geometry.

Topics and Scope:

I. Atoms

A. Bohr model structure

- B. Quantum mechanical model structure
- II. Review of Elementary Algebra
- III. Basic Laws of Physics
 - A. Ohm's law
 - B. Watt's law
 - C. Kirchoff's laws
- IV. Direct Current (DC) Circuits
 - A. Digital volt meters
 - B. Series circuits
 - C. Parallel circuits
 - D. Series-parallel circuits
- V. Unloaded voltage dividers
- VI. Conductors and insulators
- VII. Control components
 - A. Switches
 - B. Fuses
 - C. Circuit breakers
- VIII. Resistors, Fixed and Variable
- IX. Batteries
- X. Magnetism
- XI. Right Angle Trigonometry
- XII. Alternating Current (AC)
 - A. Oscilloscope operation
 - B. Frequency
 - C. Sine wave values
- XIII. Capacitors and Capacitance
 - A. Resistor-capacitor (RC) time constant
 - B. Capacitive reactance
 - C. RC circuit impedance
 - 1. series
 - 2. parallel
 - 3. series-parallel
- XIV. Inductors and Inductance
 - A. Resistor-inductor (RL) time constant
 - B. Inductive reactance
 - C. RL circuit impedance
 - 1. series
 - 2. parallel
 - 3. series-parallel
- XV. Resistor, Inductor, Capacitor (RLC) Circuits
 - A. Series
 - B. Parallel
 - C. Admittance, conductance and susceptance
 - D. Transformers

All subjects are covered in both lecture and lab portions of the course.

LABORATORY MATERIAL

- I. Ohm's Law simple circuits
- II. Series Circuits Kirchoff's Laws, Watt's Law, & Ohm's Law. Voltage dividers
- III. Parallel Circuits Kirchoff's Laws, Watt's Law, & Ohm's Law. Current dividers
- IV. Complex Circuits Kirchoff's Laws, Watt's Law, & Ohm's Law. Maximum Power

Transfer.

- V. Basic oscilloscope and multimeter operation and measurements
- VI. Resistor Capacitor (RC) circuits, impedance measurements & calculations including RC time constant
- VII. Resistor Inductor (RL) circuits, impedance measurements & calculations
- VIII. RLC circuits impedance measurements & calculations

Assignment:

Lecture-Related Assignments:

- 1. Textbook readings, 20 30 pages per week.
- 2. Homework assignments (10-15)
- 3. Lab reports (8-14)
- 4. Quizzes (4-8)
- 5. Final exam: objective examination including multiple choice, true/false, matching items, completion, and objective/essay questions
- 6. Lab skills test

Lab-Related Assignments:

1. Lab assignments (8-14)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Lab reports

Writing 20 - 30%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, lab assignments

Problem solving 30 - 40%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Lab skills test

Skill Demonstrations 10 - 20%

Exams: All forms of formal testing, other than skill performance exams.

Quizzes and final exam

Exams 30 - 40%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:Contemporary Electronics: Fundamentals, Devices, Circuits, and Systems. Frenzel, Louis. McGraw-Hill Education. 2013 (classic)