MATH 58 Course Outline as of Summer 2019

CATALOG INFORMATION

Dept and Nbr: MATH 58 Title: PRECALCULUS TRIGONOMETRY Full Title: Precalculus Trigonometry Last Reviewed: 2/10/2020

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Trigonometry topics, including trigonometric identities, equations, functions, inverse functions, and graphs, polar coordinates, parametric equations, complex numbers, vectors and applications.

Prerequisites/Corequisites:

Completion of MATH 156 or MATH 154 or MATH 155 or appropriate placement based on AB 705 mandates

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Trigonometry topics, including trigonometric identities, equations, functions, inverse functions, and graphs, polar coordinates, parametric equations, complex numbers, vectors and applications. (Grade Only) Prerequisites/Corequisites: Completion of MATH 156 or MATH 154 or MATH 155 or appropriate placement based on AB 705 mandates Recommended:

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication and Analytical Thinking		Effective: Fall 2006	Inactive:
	В	Communication Thinking	n and Analytical	Fall 1981	Fall 1999
	MC	Math Competer	ncy		. .
CSU GE:	Transfer Area	-		Effective:	Inactive:
	B4	Math/Quantitat		Fall 2006	E 11 100C
	B4	Math/Quantitat	ive Reasoning	Fall 1981	Fall 1996
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 2006	Inactive:	
UC Transfer:		Effective:		Inactive:	

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Define and graph the six trigonometric functions and their inverses, solve equations involving trigonometric functions symbolically and graphically, and verify trigonometric identities.
- 2. Use trigonometric functions, identities, and Laws of Sines and Cosines to solve application problems.
- 3. Define, graph, and demonstrate appropriate applications of vectors, complex numbers in trigonometric form, polar coordinates, and parametric equations.

Objectives:

During this course, students will:

- 1. Define and apply the trigonometric functions, using right triangle and unit circle approaches, and using degree and radian measures.
- 2. Verify and apply trigonometric identities.
- 3. Solve equations involving trigonometric functions both graphically and analytically.
- 4. Graph trigonometric functions and their transformations.
- 5. Define and graph the inverse trigonometric functions.
- 6. Solve applications and modeling problems using the trigonometric functions, identities, and the Laws of Sines and Cosines.
- 7. Represent complex numbers in trigonometric form and perform operations.
- 8. Use vectors to model applications in mathematics and science.

Topics and Scope:

I. Trigonometric Functions

A. Radian and degree measures of angles

1. Arc length

2. Area of a sector

- 3. Linear and angular velocity
- B. Right triangle and unit circle definitions
- C. Characteristics of trigonometric functions
- II. Identities and Conditional Equations
 - A. Fundamental identities
 - B. Sum and difference identities
 - C. Related identities and their derivations
 - D. Conditional trigonometric equations and applications

III. Graphical Representation of Trigonometric Functions

- A. Amplitude
- B. Reflections
- C. Period
- D. Phase (horizontal) shift
- E. Vertical shifts
- IV. Inverse Functions
 - A. Definitions
 - B. Properties
 - C. Graphs
- V. Solutions of Triangles
 - A. Right triangles
 - B. Oblique triangles
 - C. Laws of Sines and Cosines
 - D. Applications
- VI. Complex Numbers, Polar Coordinates, and Parametric Equations
 - A. Definitions
 - B. Operations
 - C. Graphical representation of complex numbers
 - D. DeMoivre's Theorem
 - E. Polar coordinates
 - F. Parametric equations
- VII. Two Dimensional Vectors
 - A. Geometric and analytic definitions
 - B. Algebra of vectors
 - C. Trigonometric form of vectors
 - D. Dot product
 - E. Applications

Assignment:

- 1. Reading outside of class (0-60 pages per week)
- 2. Problem sets (1-8 per week)
- 3. Quizzes (0-4 per week)
- 4. Projects (0-10)
- 5. Exams (2-6)
- 6. Final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None. This is tools based o solving asses

Problem Sol demonstrate computation

Problem sets

Skill Demon demonstratio performance

None

Exams: All performance

Exams and q

Other: Inclu fit into the al

Projects

Representative Textbooks and Materials:

Precalculus: Mathematics for Calculus. 7th ed. Stewart, James and Redlin, Lothar and Watson, Saleem. Cengage L. 2015

Precalculus. 3rd corrected ed. Stitz, Carl and Zeager, Jeffrey. Open Source Text. 2013 (classic)

s a degree applicable course but assessment on writing are not included because problem ssments are more appropriate for this course.	Writing 0 - 0%
lving: Assessment tools, other than exams, that competence in computational or non-al problem solving skills.	
5	Problem solving 5 - 20%
Example : All skill-based and physical ons used for assessment purposes including skill exams.	
	Skill Demonstrations 0 - 0%
forms of formal testing, other than skill exams.	
quizzes	Exams 70 - 95%
ides any assessment tools that do not logically bove categories.	
	Other Category 0 - 10%