CATALOG INFORMATION

Dept and Nbr: MATH 58 Title: PRECALCULUS TRIGONOMETRY
Full Title: Precalculus Trigonometry
Last Reviewed: 2/10/2020

Units		Course Hours per Week	Nbr of Weeks		Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50

Non-contact DHR 0

Total Out of Class Hours: 105.00
Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable
Grading: Grade Only
Repeatability: $\quad 00$ - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:

Catalog Description:

Trigonometry topics, including trigonometric identities, equations, functions, inverse functions, and graphs, polar coordinates, parametric equations, complex numbers, vectors and applications.

Prerequisites/Corequisites:

Completion of MATH 156 or MATH 154 or MATH 155 or appropriate placement based on AB 705 mandates

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Trigonometry topics, including trigonometric identities, equations, functions, inverse functions, and graphs, polar coordinates, parametric equations, complex numbers, vectors and applications. (Grade Only)
Prerequisites/Corequisites: Completion of MATH 156 or MATH 154 or MATH 155 or appropriate placement based on AB 705 mandates
Recommended:

Limits on Enrollment:
Transfer Credit: CSU;
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication and Analytical Thinking		Effective: Fall 2006	Inactive:
	B	Communic Thinking	and Analytic	Fall 1981	Fall 1999
	MC	Math Com			
CSU GE:	Transfer Area	Math/Quan	e Reasoning	Effective: Fall 2006	Inactive:
	B4	Math/Quar	ive Reasoning	Fall 1981	Fall 1996
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer: Transferable		Effective:	Fall 2006	Inactive:	
UC Transfer:		Effective:		Inactive:	
CID:					
Certificate/Major Applicable:					
Both Certificate and Major Applicable					

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

1. Define and graph the six trigonometric functions and their inverses, solve equations involving trigonometric functions symbolically and graphically, and verify trigonometric identities.
2. Use trigonometric functions, identities, and Laws of Sines and Cosines to solve application problems.
3. Define, graph, and demonstrate appropriate applications of vectors, complex numbers in trigonometric form, polar coordinates, and parametric equations.

Objectives:

During this course, students will:

1. Define and apply the trigonometric functions, using right triangle and unit circle approaches, and using degree and radian measures.
2. Verify and apply trigonometric identities.
3. Solve equations involving trigonometric functions both graphically and analytically.
4. Graph trigonometric functions and their transformations.
5. Define and graph the inverse trigonometric functions.
6. Solve applications and modeling problems using the trigonometric functions, identities, and the Laws of Sines and Cosines.
7. Represent complex numbers in trigonometric form and perform operations.
8. Use vectors to model applications in mathematics and science.

Topics and Scope:

I. Trigonometric Functions
A. Radian and degree measures of angles

1. Arc length
2. Area of a sector
3. Linear and angular velocity
B. Right triangle and unit circle definitions
C. Characteristics of trigonometric functions
II. Identities and Conditional Equations
A. Fundamental identities
B. Sum and difference identities
C. Related identities and their derivations
D. Conditional trigonometric equations and applications
III. Graphical Representation of Trigonometric Functions
A. Amplitude
B. Reflections
C. Period
D. Phase (horizontal) shift
E. Vertical shifts
IV. Inverse Functions
A. Definitions
B. Properties
C. Graphs
V. Solutions of Triangles
A. Right triangles
B. Oblique triangles
C. Laws of Sines and Cosines
D. Applications
VI. Complex Numbers, Polar Coordinates, and Parametric Equations
A. Definitions
B. Operations
C. Graphical representation of complex numbers
D. DeMoivre's Theorem
E. Polar coordinates
F. Parametric equations
VII. Two Dimensional Vectors
A. Geometric and analytic definitions
B. Algebra of vectors
C. Trigonometric form of vectors
D. Dot product
E. Applications

Assignment:

1. Reading outside of class (0-60 pages per week)
2. Problem sets (1-8 per week)
3. Quizzes (0-4 per week)
4. Projects (0-10)
5. Exams (2-6)
6. Final exam

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing
0-0\%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Problem sets

Problem solving
5-20\%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None
Skill Demonstrations 0-0\%

Exams: All forms of formal testing, other than skill performance exams.

Exams and quizzes

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Other Category
0-10\%

Representative Textbooks and Materials:

Precalculus: Mathematics for Calculus. 7th ed. Stewart, James and Redlin, Lothar and Watson, Saleem. Cengage L. 2015
Precalculus. 3rd corrected ed. Stitz, Carl and Zeager, Jeffrey. Open Source Text. 2013 (classic)

