
 
 
CATALOG INFORMATION

Full Title: Programming Concepts and Methodologies 2
Last Reviewed: 3/27/2023
 

 

 

 
Catalog Description:
Application of software engineering techniques to the design and development of large
programs; data abstraction and structures and associated algorithms.
 
Prerequisites/Corequisites:
Course Completion of CS 10B
 
Recommended Preparation:
Eligibility for ENGL 1A or equivalent
 
Limits on Enrollment:
 
 
Schedule of Classes Information:
Description: Application of software engineering techniques to the design and development of
large programs; data abstraction and structures and associated algorithms. (Grade or P/NP)
Prerequisites/Corequisites: Course Completion of CS 10B
Recommended: Eligibility for ENGL 1A or equivalent
Limits on Enrollment:  
Transfer Credit: CSU;UC. 
Repeatability: Two Repeats if Grade was D, F, NC, or NP

4/19/2024 6:36 PM Approved (Changed Course)

CS 10C Course Outline as of Fall 2018

Dept and Nbr: CS 10C Title: PROGRAMMING CONCEPTS 2

Units Course Hours per Week Nbr of Weeks Course Hours Total

Maximum 4.00 Lecture Scheduled 3.00 17.5 Lecture Scheduled 52.50
Minimum 4.00 Lab Scheduled 3.00 6 Lab Scheduled 52.50

Contact DHR 0 Contact DHR 0
Contact Total 6.00 Contact Total 105.00

Non-contact DHR 0 Non-contact DHR 0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 210.00

Title 5 Category: AA Degree Applicable
Grading: Grade or P/NP
Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly: CS 11



 
ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

 
Certificate/Major Applicable: 
Major Applicable Course

 
COURSE CONTENT
 
Student Learning Outcomes:
At the conclusion of this course, the student should be able to:
1.  Write programs in C++ that use arrays, linked lists, stacks, queues, hash tables, and recursion.
 
2.  Explain how object-oriented programming uses abstraction to increase reusability of
software.
3.  Summarize the differences between programming paradigms. 
 
Objectives:
At the conclusion of this course, the student should be able to:
1. Write programs that use each of the following data structures: arrays, records, strings, linked
    lists, stacks, queues, and hash tables.
2. Implement, test, and debug simple recursive functions and procedures.
3. Evaluate tradeoffs in lifetime management (reference counting vs. garbage collection).
4. Explain how abstraction mechanisms support the creation of reusable software components.
5. Design, implement, test, and debug simple programs in an object-oriented programming
    language.
6. Compare and contrast object-oriented analysis and design with structured analysis and design.
 
Topics and Scope:
 
I. Programming Fundamentals
    A. Primitive types
    B. Arrays
    C. Records
    D. Strings and string processing
    E. Data representation in memory
    F. Static, stack, and heap allocation
    G. Runtime storage management
    H. Pointers and references

AS Degree: Area Effective: Inactive:
CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Spring 1991 Inactive:

UC Transfer: Transferable Effective: Spring 1991 Inactive:

CID:
CID Descriptor:COMP 132 Programming Concepts and Methodology II
SRJC Equivalent Course(s): CS10C

SR_ClassCheck.aspx?CourseKey=CS10C


    I. Linked structures
    J. Implementation strategies for stacks, queues, and hash tables
    K. Implementation strategies for trees
    L. Strategies for choosing the right data structure
II. Recursion 
    A. The concept of recursion
    B. Recursive mathematical functions
    C. Simple recursive procedures
    D. Divide-and-conquer strategies
    E. Recursive backtracking
    F. Implementation of recursion
III. Declarations and Types
    A. The conception of types as a set of values together with a set of operations
    B. Declaration models (binding, visibility, scope, and lifetime)
    C. Overview of type-checking
    D. Garbage collection
IV. Abstraction Mechanisms
    A. Procedures, functions, and iterators as abstraction mechanisms
    B. Parameterization mechanisms (reference vs. value)
    C. Activation records and storage management
    D. Type parameters and parameterized types - templates or generics
    E. Modules in programming languages
V. Object-Oriented Programming
    A. Object-oriented design
    B. Encapsulation and information-hiding
    C. Separation of behavior and implementation
    D. Classes and subclasses
    E. Inheritance (overriding, dynamic dispatch)
    F. Polymorphism (subtype polymorphism vs. inheritance)
    G. Class hierarchies
    H. Collection classes and iteration protocols
    I. Internal representations of objects and method tables
VI. Software Design
    A. Fundamental design concepts and principles
    B. Design strategy
 
All topics are covered in both the lecture and lab parts of the course.
 
Assignment:
 
Lecture Related Assignments:
1. Read approximately 30 pages per week
2. Complete 2-8 examinations including final exam
 
Lab Related Assignments:
1. Complete 10-15 programming assignments,with documentation, using the C++ programming
    language
 

Methods of Evaluation/Basis of Grade:



 
Representative Textbooks and Materials:
Starting Out with C++ From Control Structures through Objects. 8th ed. Gaddis, Tony. Pearson.
2014 
 

Writing: Assessment tools that demonstrate writing skills
and/or require students to select, organize and explain ideas
in writing.

Written program documentation
Writing

10 - 20%

Problem Solving: Assessment tools, other than exams, that
demonstrate competence in computational or non-
computational problem solving skills.

Programming assignments
Problem solving

20 - 60%

Skill Demonstrations: All skill-based and physical
demonstrations used for assessment purposes including skill
performance exams.

None
Skill Demonstrations

0 - 0%

Exams: All forms of formal testing, other than skill
performance exams.

Exams, Final Exam: (Multiple choice, true/false, matching
items, completion, programming problems)

Exams
20 - 60%

Other: Includes any assessment tools that do not logically
fit into the above categories.

None
Other Category

0 - 0%


