CS 10C Course Outline as of Fall 2018

CATALOG INFORMATION

Dept and Nbr: CS 10C Title: PROGRAMMING CONCEPTS 2 Full Title: Programming Concepts and Methodologies 2 Last Reviewed: 3/27/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	4.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	4.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	6.00		Contact Total	105.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 210.00

Title 5 Category:	AA Degree Applicable
Grading:	Grade or P/NP
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	CS 11

Catalog Description:

Application of software engineering techniques to the design and development of large programs; data abstraction and structures and associated algorithms.

Prerequisites/Corequisites: Course Completion of CS 10B

Recommended Preparation: Eligibility for ENGL 1A or equivalent

Limits on Enrollment:

Schedule of Classes Information:

Description: Application of software engineering techniques to the design and development of large programs; data abstraction and structures and associated algorithms. (Grade or P/NP) Prerequisites/Corequisites: Course Completion of CS 10B Recommended: Eligibility for ENGL 1A or equivalent Limits on Enrollment: Transfer Credit: CSU;UC. Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: CSU GE:	Area Transfer Area	L		Effective: Effective:	Inactive: Inactive:
IGETC:	Transfer Area	L		Effective:	Inactive:
CSU Transfer	:Transferable	Effective:	Spring 1991	Inactive:	
UC Transfer:	Transferable	Effective:	Spring 1991	Inactive:	

CID:

CID Descriptor:COMP 132 Programming Concepts and Methodology II SRJC Equivalent Course(s): CS10C

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

1. Write programs in C++ that use arrays, linked lists, stacks, queues, hash tables, and recursion.

2. Explain how object-oriented programming uses abstraction to increase reusability of software.

3. Summarize the differences between programming paradigms.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Write programs that use each of the following data structures: arrays, records, strings, linked lists, stacks, queues, and hash tables.
- 2. Implement, test, and debug simple recursive functions and procedures.
- 3. Evaluate tradeoffs in lifetime management (reference counting vs. garbage collection).
- 4. Explain how abstraction mechanisms support the creation of reusable software components.
- 5. Design, implement, test, and debug simple programs in an object-oriented programming language.
- 6. Compare and contrast object-oriented analysis and design with structured analysis and design.

Topics and Scope:

- I. Programming Fundamentals
 - A. Primitive types
 - B. Arrays
 - C. Records
 - D. Strings and string processing
 - E. Data representation in memory
 - F. Static, stack, and heap allocation
 - G. Runtime storage management
 - H. Pointers and references

- I. Linked structures
- J. Implementation strategies for stacks, queues, and hash tables
- K. Implementation strategies for trees
- L. Strategies for choosing the right data structure
- II. Recursion
 - A. The concept of recursion
 - B. Recursive mathematical functions
 - C. Simple recursive procedures
 - D. Divide-and-conquer strategies
 - E. Recursive backtracking
 - F. Implementation of recursion

III. Declarations and Types

- A. The conception of types as a set of values together with a set of operations
- B. Declaration models (binding, visibility, scope, and lifetime)
- C. Overview of type-checking
- D. Garbage collection

IV. Abstraction Mechanisms

- A. Procedures, functions, and iterators as abstraction mechanisms
- B. Parameterization mechanisms (reference vs. value)
- C. Activation records and storage management
- D. Type parameters and parameterized types templates or generics
- E. Modules in programming languages

V. Object-Oriented Programming

- A. Object-oriented design
- B. Encapsulation and information-hiding
- C. Separation of behavior and implementation
- D. Classes and subclasses
- E. Inheritance (overriding, dynamic dispatch)
- F. Polymorphism (subtype polymorphism vs. inheritance)
- G. Class hierarchies
- H. Collection classes and iteration protocols
- I. Internal representations of objects and method tables

VI. Software Design

- A. Fundamental design concepts and principles
- B. Design strategy

All topics are covered in both the lecture and lab parts of the course.

Assignment:

Lecture Related Assignments:

- 1. Read approximately 30 pages per week
- 2. Complete 2-8 examinations including final exam

Lab Related Assignments:

1. Complete 10-15 programming assignments, with documentation, using the C++ programming language

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Written program documentation	Writing 10 - 20%
Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.	
Programming assignments	Problem solving 20 - 60%
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.	
None	Skill Demonstrations 0 - 0%
Exams: All forms of formal testing, other than skill performance exams.	
Exams, Final Exam: (Multiple choice, true/false, matching items, completion, programming problems)	Exams 20 - 60%
Other: Includes any assessment tools that do not logically fit into the above categories.	
None	Other Category 0 - 0%

Representative Textbooks and Materials: Starting Out with C++ From Control Structures through Objects. 8th ed. Gaddis, Tony. Pearson. 2014