MATH 2 Course Outline as of Fall 2014

CATALOG INFORMATION

Dept and Nbr: MATH 2 Title: CALCULUS 4 Full Title: Calculus, Fourth Course-Differential Equations Last Reviewed: 11/28/2022

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	MATH 2B

Catalog Description:

First and second order differential equations with applications, series solutions, numerical methods, introduction to Laplace transforms, systems of differential equations with applications.

Prerequisites/Corequisites: Course Completion of MATH 1C OR MATH 2A

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: First and second order differential equations with applications, series solutions, numerical methods, introduction to Laplace transforms, systems of differential equations with applications. (Grade Only) Prerequisites/Corequisites: Course Completion of MATH 1C OR MATH 2A Recommended: Limits on Enrollment: Transfer Credit: CSU;UC.

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B MC	Communication and Analytical Thinking Math Competency		Effective: Fall 1981	Inactive:
CSU GE:	Transfer Area			Effective:	Inactive:
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer	: Transferable	Effective:	Fall 1981	Inactive:	
UC Transfer:	Transferable	Effective:	Fall 1981	Inactive:	

CID:

CID Descriptor:MATH 240	Ordinary Differential Equations
SRJC Equivalent Course(s):	MATH2

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

1. Identify and solve ordinary differential equations and initial value problems using analytical and numerical methods.

2. Identify and solve systems of differential equations.

3. Model and solve applied problems using differential equations and systems of differential equations.

Objectives:

Upon completion of the course, students will be able to:

- 1. Classify differential equations as to order, type, and kind.
- 2. Use slope fields to provide a qualitative analysis of the solutions to a differential equation.

3. Solve homogeneous and exact first-order linear differential equations, including initial value problems.

- 4. Solve separable first-order differential equations, including initial value problems.
- 5. Apply the existence and uniqueness theorems for ordinary differential equations.

6. Use the Wronskian to identify sets of fundamental solutions to higher order linear differential equations.

7. Solve homogeneous and non-homogeneous linear differential equations of second and higher order using

various techniques such as variation of parameters, undetermined coefficients and the annihilator method.

8. Solve ordinary differential equations using numerical methods such as Euler's method and the method of

Runge-Kutta.

9. Apply techniques of solving differential equations and initial value problems to at least three out of the five

following applications.

- a) mixture problems
- b) electrical circuits
- c) population modeling
- d) inductance, resistance and capacitance, LRC circuits
- e) forced oscillations.
- 10. Solve initial value problems using the methods of Laplace transforms.
- 11. Solve systems of differential equations.
- 12. Solve differential equations using power series methods.

Topics and Scope:

- I. Ordinary Differential Equations
 - A. Linear differential equations with applications
 - B. Separable differential equations
 - C. Slope fields
 - D. Existence and uniqueness of solutions
 - E. Use of Wronskian
 - F. Numerical methods including 4th order Runge-Kutta
- II. Introduction to Laplace Transforms
 - A. Laplace transform and inverse
 - B. Use of tables
 - C. Application to linear differential equations
- III. Series Solutions to Differential Equations
- Taylor series solutions to differential equations
- IV. Systems of Differential Equations
 - A. Analysis of phase portraits
 - B. Solution by matrices
 - C. The operator method or Laplace transforms
 - D. Use of systems to solve higher order linear ordinary differential equations
 - E. Applications
 - 1. coupled spring-mass systems
 - 2. compartment analysis
 - 3. other applications

Assignment:

- 1. Daily reading outside of class (20-50 pages per week).
- 2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor (1-6 per week).
- 3. Quizzes (0-4 per week).
- 4. Exams (3-8 per term).
- 5. Projects (for example, computer explorations or modeling activities, 0-10 per term).

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.	Writing 0 - 0%
Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.	
Problem set assignments	Problem solving 5 - 20%
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.	
None	Skill Demonstrations 0 - 0%
Exams: All forms of formal testing, other than skill performance exams.	
Multiple choice and free response exams; quizzes	Exams 70 - 95%
Other: Includes any assessment tools that do not logically fit into the above categories.	
Projects	Other Category 0 - 20%

Representative Textbooks and Materials:

Differential Equations and Boundary Value Problems, Computing and Modeling, 4th ed. by Edwards and Penney. Pearson Education, Inc. 2008 A First Course in Differential Equations, 9th ed. by Zill. Cengage Learning, 2008 Elementary Differential Equations, 8th ed. by Rainville, Bedient and Bedient. Prentice Hall, 1997 (classic)