SRJC Course Outlines

11/21/2024 1:27:25 AMCHEM 3A Course Outline as of Fall 2025

Changed Course
CATALOG INFORMATION

Discipline and Nbr:  CHEM 3ATitle:  GENERAL CHEMISTRY 1:LEC  
Full Title:  General Chemistry Part 1: Lecture
Last Reviewed:9/23/2024

UnitsCourse Hours per Week Nbr of WeeksCourse Hours Total
Maximum3.00Lecture Scheduled3.0017.5 max.Lecture Scheduled52.50
Minimum3.00Lab Scheduled06 min.Lab Scheduled0
 Contact DHR0 Contact DHR0
 Contact Total3.00 Contact Total52.50
 
 Non-contact DHR0 Non-contact DHR Total0

 Total Out of Class Hours:  105.00Total Student Learning Hours: 157.50 

Title 5 Category:  AA Degree Applicable
Grading:  Grade Only
Repeatability:  00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As: 
Formerly: 

Catalog Description:
Untitled document
In this course, students will learn general principles of chemistry, including atomic theory, bonding, stoichiometry, kinetic molecular theory of gases, properties of mixtures, the periodic table, and thermochemistry. This is the lecture portion of the first semester of a one-year program of general chemistry. (Students who have completed one year of high school chemistry should consider petitioning to enroll.)

Prerequisites/Corequisites:
Course Completion or Concurrent Enrollment in CHEM 3AL; AND Course Completion of CHEM 42; AND Course Completion of MATH 154 or MATH 155 or MATH 156 or higher (MATH); OR AB705 placement into Math Tier 1 or higher


Recommended Preparation:
Course Completion of ENGL C1000 or equivalent

Limits on Enrollment:

Schedule of Classes Information
Description: Untitled document
In this course, students will learn general principles of chemistry, including atomic theory, bonding, stoichiometry, kinetic molecular theory of gases, properties of mixtures, the periodic table, and thermochemistry. This is the lecture portion of the first semester of a one-year program of general chemistry. (Students who have completed one year of high school chemistry should consider petitioning to enroll.)
(Grade Only)

Prerequisites:Course Completion or Concurrent Enrollment in CHEM 3AL; AND Course Completion of CHEM 42; AND Course Completion of MATH 154 or MATH 155 or MATH 156 or higher (MATH); OR AB705 placement into Math Tier 1 or higher
Recommended:Course Completion of ENGL C1000 or equivalent
Limits on Enrollment:
Transfer Credit:CSU;UC.
Repeatability:00 - Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION

Associate Degree:Effective:Fall 2020
Inactive: 
 Area:C
Natural Sciences
 
CSU GE:Transfer Area Effective:Inactive:
 B1Physical ScienceFall 2020
 
IGETC:Transfer Area Effective:Inactive:
 5APhysical SciencesFall 2020
 
CSU Transfer:TransferableEffective:Fall 2020Inactive:
 
UC Transfer:TransferableEffective:Fall 2020Inactive:
 
C-ID:
 CID Descriptor: CHEM 110 General Chemistry for Science Majors I, with Lab SRJC Equivalent Course(s): CHEM1A OR CHEM4A OR CHEM3A AND CHEM3AL
 CID Descriptor: CHEM 120S General Chemistry for Science Majors Sequence A SRJC Equivalent Course(s): CHEM1A AND CHEM1B OR CHEM4A AND CHEM4B OR CHEM3A AND CHEM3AL AND CHEM3B

Certificate/Major Applicable: Both Certificate and Major Applicable



COURSE CONTENT

Student Learning Outcomes:
At the conclusion of this course, the student should be able to:
Untitled document
1. Describe matter, its transformations and corresponding energy changes according to prevailing chemical theories.
2. Interpret and solve problems in a chemical context using quantitative reasoning.
 

Objectives: Untitled document
At the conclusion of this course, the student should be able to:
1. Use dimensional analysis and stoichiometry to solve quantitative chemical problems.  
2. Apply atomic theory in describing matter, including chemical nomenclature and physical and chemical processes.  
3. Summarize the quantum mechanical structure of the hydrogen atom in light of its emission spectrum, and apply it to many-electron systems.  
4. Calculate energy changes in calorimetry and chemical reactions.  
5. Use the periodic table of elements to recognize trends and patterns, and to perform calculations.  
6. Describe the bonding and shapes of simple compounds with a range of models.  
7. Apply kinetic-molecular theory to the behavior of ideal and real gases.  
8. Relate intermolecular forces to the physical properties of matter.  
9. Calculate the effects of solute concentration on the physical properties of solutions.  
10. Describe practical applications of chemical principles.

Topics and Scope
Untitled document
I. Basic Tools and Problem Solving
    A. Metric system and units
    B. Dimensional analysis and conversions
    C. Significant figures
II. Stoichiometry
    A. Amount of substance and molar mass
    B. Mass calculations
    C. Limiting reactants and yields
    D. Concentration and solution stoichiometry
    E. Gas stoichiometry
    F. Energy calculations
III. Atomic Theory
    A. States of matter
    B. Nomenclature of simple compounds
    C. Chemical composition
         1. Mass fraction
         2. Empirical formulas
         3. Molecular formulas
    D. Chemical reactions
         1. Balancing
         2. Precipitation
         3. Acid-base
         4. Oxidation-reduction
IV. Structure of the Atom
    A. Light and the electromagnetic spectrum
    B. Emission spectra
    C. Bohr model of hydrogen
    D. Quantum mechanical model of the atom
    E. Quantum numbers
    F. Writing electron configurations
V. Thermochemistry
    A. Calorimetry
    B. Pressure-Volume (PV) work
    C. Energy versus enthalpy
    D. Hess's law
    E. Enthalpies of formation
    F. Reaction enthalpies
    G. Bond energies and reaction enthalpies
VI. Periodic Trends
    A. Atomic size
    B. Ionization energy
    C. Electronegativity
    D. Ionic radius
VII. Bonding and Molecular Structure
    A. Ionic bonding
    B. Born-Haber cycle
    C. Lewis structures
    D. Valence Shell Electron Pair Repulsion (VSEPR) Theory
    E. Covalent bond order, polarity, energy, and length
    F. Hybridization of atomic orbitals
    G. Valence Bond (VB) theory
    H. Molecular Orbital (MO) theory
VIII. Kinetic Molecular Theory of Gases
    A. Molecular scale understanding of gas pressure and temperature
    B. Development and applications of the ideal gas law
    C. Dalton's law of partial pressures
    D. Graham's law of effusion and diffusion
    E. Approximating real gases with the van Der Waals equation
IX. Intermolecular Forces (IMF)
    A. Molecular polarity
    B. Types of intermolecular forces
    C. Physical properties and IMF
    D. Phases and phase diagrams
X. Liquids and Solids
    A. Properties of the liquid state
    B. Uniqueness of water
    C. Structure, properties, and bonding in the solid state
    D. Structure of crystalline solids

Assignments:
Untitled document
1. Reading and study assignments from the textbook (20-30 pages per week)
2. Homework problems (0-30 per week)
3. Exams (3-5), quiz(zes) (0-4), and final exam
4. Research project(s) (0-2)

Methods of Evaluation/Basis of Grade.
Writing: Assessment tools that demonstrate writing skill and/or require students to select, organize and explain ideas in writing.Writing
0 - 0%
None
This is a degree applicable course but assessment tools based on writing are not included because this course includes essay exams that fulfil the writing component of the course.
Problem solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.Problem Solving
0 - 40%
Homework problems
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.Skill Demonstrations
0 - 0%
None
Exams: All forms of formal testing, other than skill performance exams.Exams
50 - 100%
Exams, quiz(zes), final exam
Other: Includes any assessment tools that do not logically fit into the above categories.Other Category
0 - 20%
Research project(s)


Representative Textbooks and Materials:
Untitled document
Chemistry: The Molecular Nature of Matter and Change. 9th ed. Silberberg, Martin and Amateis, Patricia. McGraw-Hill. 2020. (classic).
Chemistry. 14th ed. Chang, Raymond and Overby, Jason. McGraw-Hil. 2022.
General Chemistry. 4th ed. McQuarrie, Donald and Rock, Peter and Gallogly, Ethan. University Science Books. 2010. (classic).
Chemistry. 6th ed. Gilbert, Thomas and Kirss, Rein and Bretz, Stacey and Foster, Natalie. W. W. Norton. 2020. (classic).
Chemistry: A Molecular Approach. 6th ed. Tro, Nivaldo. Pearson. 2024.

Print PDF