SRJC Course Outlines

9/22/2019 3:27:26 AMBIO 2.3 Course Outline as of Fall 2018

Changed Course
CATALOG INFORMATION

Discipline and Nbr:  BIO 2.3Title:  FUND BIO: BOTANY, ECO  
Full Title:  Fundamentals of Biology (Botany and Ecology)
Last Reviewed:11/27/2017

UnitsCourse Hours per Week Nbr of WeeksCourse Hours Total
Maximum5.00Lecture Scheduled3.0017.5 max.Lecture Scheduled52.50
Minimum5.00Lab Scheduled6.008 min.Lab Scheduled105.00
 Contact DHR0 Contact DHR0
 Contact Total9.00 Contact Total157.50
 
 Non-contact DHR0 Non-contact DHR Total0

 Total Out of Class Hours:  105.00Total Student Learning Hours: 262.50 

Title 5 Category:  AA Degree Applicable
Grading:  Grade Only
Repeatability:  00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As: 
Formerly:  BIO 2B

Catalog Description:
Untitled document
Covers the principles of ecology and the phylogeny of bacteria, protists, fungi, and plants with emphasis on development, morphology, and physiology of higher plants. Field trips taken. Intended for students majoring in biological sciences, pre-medical, or related pre-professional programs.

Prerequisites/Corequisites:
Course Completion of BIO 2.1


Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information
Description: Untitled document
Covers the principles of ecology and the phylogeny of bacteria, protists, fungi, and plants with emphasis on development, morphology, and physiology of higher plants. Field trips taken. Intended for students majoring in biological sciences, pre-medical, or related pre-professional programs.
(Grade Only)

Prerequisites:Course Completion of BIO 2.1
Recommended:
Limits on Enrollment:
Transfer Credit:CSU;UC.
Repeatability:00 - Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION

Associate Degree:Effective:Fall 1981
Inactive: 
 Area:C
Natural Sciences
 
CSU GE:Transfer Area Effective:Inactive:
 B2Life ScienceFall 1981
 B3Laboratory Activity  
 
IGETC:Transfer Area Effective:Inactive:
 5BBiological SciencesFall 1981
 5CFulfills Lab Requirement  
 
CSU Transfer:TransferableEffective:Fall 1981Inactive:
 
UC Transfer:TransferableEffective:Fall 1981Inactive:
 
C-ID:
 CID Descriptor: BIOL 155 Botany / Plant Diversity and Ecology SRJC Equivalent Course(s): BIO2.3

Certificate/Major Applicable: Major Applicable Course



COURSE CONTENT

Student Learning Outcomes:
Upon completion of the course, students will be able to:
Untitled document
1.  Compare and contrast the ecology and evolution of algal protists, cyanobacteria, plants, and
    fungi using cladistic classification.
2.  Apply and integrate information from one or more levels of biological organization to study of
    cell mechanisms, anatomy, physiology, ecology, and evolution of plants, protists, or fungi.
3.  Analyze global environmental problems with application of ecological principles to determine
    the impact of one on the other.
4.  Investigate and evaluate biological phenomenon and summarize results in written scientific
    format.  
5.  Perform laboratory techniques, including microscopy, with a high level of expertise without
    assistance or instruction.

Objectives: Untitled document
During the course, students will:
1. Outline the classification system for major groups within the bacteria, algal protists, fungi and
    plants, and be able to correctly identify and classify selected example organisms.
2. Examine endosymbiotic evidence linking cyanobacterial photosynthesis to protists and plants.
3. Differentiate between zygotic, sporic, and gametic meiosis life cycle patterns of protists, fungi
    and plants life cycles.
4. Identify major evolutionary structural and reproductive advances in plants.
5. Explain the phylogenetic relationships between major taxonomic groups and relate these links
    to evolutionary history using cladistic models.
6. Identify and explain the functions of the basic structures of organisms (emphasis on plants)
    and describe the complementary relationships between these structures and their functions.
7. Describe the physiological functions of plants in relationship to the natural habitats in which
    plants have evolved.
8. Explain the processes of life histories and development in plants from the embryo to the
    mature adult, including the influences of hormones and environmental factors.
9. Explain the principles of ecology, emphasizing populations, communities, and ecosystems.
10. Describe the consequences of human impacts of the global and local environment with an
    emphasis on conservation biology.

Topics and Scope
Untitled document
I. Introduction
    A. Review of scientific method
    B. Principles of biosystematics
    C. Phylogenetic classification of living things using cladistics
II. Cells
    A. Structure of the prokaryotic cell
    B. Eukaryotic cell structure and function, emphasizing the function of specialized plant organelles
    C. Review of cellular reproduction: mitosis and meiosis
    D. Benefits of multicellularity
    E. Representative life cycles including: sporic, gametic, and zygotic meiosis
III. Bacteria
    A. Bacterial diversity with emphasis on cyanobacteria
    B. Origin of photosynthetic mechanisms emphasizing cyanobacteria and chlorophyll a
IV. Photosynthetic Protists and Close Relatives
     A. Euglenoids
    B. Dinoflagellates
    C. Diatoms, brown algae
    D. Water molds
    E.  Red and green algae
V. Fungi
    A. Chytridomycota
    B. Zygomycota
    C. Glomeromycota
    D. Ascomycota
    E. Basiciomycota
    F. Lichens
    G. Mycorrhiza
VI. Plants
    A. Origin and development of the Kingdom Plantae
    B. Diversity and evolutionary advances
         1. Bryophytes and seedless vascular plants
         2. Evolution of seed plants
         3. Gymnosperms
         4. Angiosperms
    C. Plant structure and function
         1. Tissues and tissue systems.
         2. Seed plant anatomy (stems, roots, leaves, flowers, and fruit)
         3. Primary and secondary growth
VII. Plant Physiology
    A. Water in living systems
         1. Diffusion
         2. Osmosis
         3. Water potential
    B. Active and passive transport in plants
         1. Transport of water
         2. Gas exchange and stomatal control mechanisms
         3. Transport of solutes in plants
    C. Metabolism
         1. Review respiration and energetics
         2. Photosynthesis
         3. Alternative photosynthetic pathways (C3, C4, and CAM) and photorespiration
    D. Soils and mineral nutrition
    E. Plant growth and development
    F. Plant hormones and their functions
VIII. Ecology
    A. Dynamics of biological systems
    B. Population biology
         1. Structure
         2. Demographics
    C. Community dynamics
         1. Structure and species interaction
         2. Succession and disequilibrium models
    D. Ecosystem
         1. Energy flow and trophic structure
         2. Water and nutrient cycling
         3. Human impacts
    E. Conservation Biology
         1. Endangered species and invasive species
         2. Habitat fragmentation
         3. Genetic diversity and extinction
IX. Laboratory Exercises
    A. Microscopy
         1. Plant cells
         2. Cyanobacteria
         3. Cell reproduction
    B. Diversity: taxonomy and identification
         1. Algae, fungi, and protists
         2. Seedless vascular plants
         3. Gymnosperms
         4. Angiosperms
    C. Physiology
         1. Plant transport
         2. Osmosis and water potential
         3. Mineral nutrition
         4. Photosynthesis
         5. Growth
    D. Ecology
         1. Perform field ecology sampling, such as vegetation analysis
         2. Field trips to study local plant communities

Assignments:
Untitled document
Lecture-Related Assignments:
1. Reading in text and other sources (30-60 pages per week)
2. Exams (3-4)
3. Comprehensive final exam including objective and essay questions
4. Quizzes (0-20)
 
Lab-Related Assignments:
1. Lab notebooks: notes and drawings from lab observations
2. Laboratory exercises including data collection and analysis
3. Scientific writing including calculations, graphing, data analysis and scientific paper format
4. Quizzes (0-20)
5. Lab practical exams (3-4)

Methods of Evaluation/Basis of Grade.
Writing: Assessment tools that demonstrate writing skill and/or require students to select, organize and explain ideas in writing.Writing
15 - 30%
Scientific writing
Problem solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.Problem Solving
0 - 10%
Lab exercises and data analysis
Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.Skill Demonstrations
0 - 25%
Lab notebooks
Exams: All forms of formal testing, other than skill performance exams.Exams
60 - 80%
Exams, final exam, quizzes, and lab practical exams
Other: Includes any assessment tools that do not logically fit into the above categories.Other Category
0 - 10%
Participation in class, including field trips


Representative Textbooks and Materials:
Untitled document
Campbell Biology. 11th ed. Urry, Lisa and Cain, Michael and Wasserman, Steven. Pearson. 2017
Photographic Atlas For Botany Laboratory. 7th ed. Rushforth, Samuel and Robbins, Robert and Crawley, John. Morton Publishing Company. 2016

Print PDF