CATALOG INFORMATION

Dept and Nbr: MATH 58 Title: TRIGONOMETRY
Full Title: Trigonometry
Last Reviewed: 2/10/2020

Units		Course Hours per Week	Nbr of Weeks		Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50

Non-contact DHR 0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable
Grading: Grade Only
Repeatability: $\quad 00$ - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:
Formerly:

Catalog Description:

Topics from trigonometry including trigonometric functions and their graphs, trigonometric identities, trigonometric equations, inverse trigonometric functions, complex numbers, polar coordinates, parametric equations, vectors, and applications.

Prerequisites/Corequisites:

Completion of MATH 155 or higher (V1)

Recommended Preparation:

No advisories.

Limits on Enrollment:

Schedule of Classes Information:

Description: Topics from trigonometry including trigonometric functions and their graphs, trigonometric identities, trigonometric equations, inverse trigonometric functions, complex numbers, polar coordinates, parametric equations, vectors, and applications. (Grade Only) Prerequisites/Corequisites: Completion of MATH 155 or higher (V1)
Recommended: No advisories.
Limits on Enrollment:

Transfer Credit: CSU;
Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree:	Area B	Communication and Analytica		Effective: Fall 2006	Inactive:
				Fall 2006	
	B	Communi Thinking	and Analyti	Fall 1981	Fall 1999
	MC	Math Com			
CSU GE:	Transfer Area			Effective:	Inactive:
	B4	Math/Qua	ive Reasonin	Fall 2006	
	B4	Math/Qua	ive Reasonin	Fall 1981	Fall 1996
IGETC:	Transfer Area			Effective:	Inactive:
CSU Transfer: Transferable		Effective:	Fall 2006	Inactive:	
UC Transfer:		Effective:		Inactive:	
CID:					
Certificate/M Not Certificate	ajor Applicable Major Applicab				

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course, students will be able to:

1. Define the trigonometric functions.
2. Use radian measure to find arc length, sector area, and linear and angular velocity.
3. Verify trigonometric identities.
4. Solve, both graphically and analytically, equations involving trigonometric functions.
5. Graph trigonometric functions and shifts, reflections and stretches of these functions.
6. Define and graph the inverse trigonometric functions.
7. Apply trigonometric functions and identities to solve applications and modeling problems.
8. Solve right and oblique triangles using the trigonometric functions and the Laws of Sine and Cosine.
9. Represent complex numbers in, and perform operations using, trigonometric form.
10. Use vectors to model applications in mathematics and science.

Topics and Scope:

Instructional methodology may include, but is not limited to: lecture, demonstrations, oral recitation, discussion, supervised practice, independent study, outside project or other assignments.
I. Trigonometric Functions
A. Radian and degree measures of angles

1. Arc length
2. Area of a sector
3. Linear and angular velocity
B. Right triangle and unit circle definitions
C. Characteristics of trigonometric functions
II. Identities and Conditional Equations

A Fundamental identities
B. Sum and difference identities
C. Related identities and their derivations
D. Conditional trigonometric equations
III. Graphical Representation of Trigonometric Functions
A. Amplitude
B. Period
C. Phase (horizontal) shifts
D. Vertical shifts
IV. Inverse Functions
A. Definition
B. Properties of inverse functions
C. Inverse trigonometric functions and their graphs
V. Solutions of Triangles
A. Right triangles
B. Oblique triangles
C. Laws of Sines and Cosines
D. Applications
VI. Complex Numbers, Polar Coordinates, and Parametric Equations
A. Definitions
B. Operations
C. Graphical representation of complex numbers
D. DeMoivre's Theorem
E. Polar coordinates
F. Parametric equations
VII. Two Dimensional Vectors
A. Geometric and analytic definitions
B. Algebra of vectors
C. Trigonometric form of vectors
D. Dot product
E. Applications

Assignment:

1. Daily reading outside of class (approximately $0-50$ pages per week)
2. Problem set assignments from required text(s)or supplementary materials chosen by the instructor
3. Exams and quizzes
4. Projects

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem tools based on writing are not included because problem
solving assessments are more appropriate for this course.

Writing 0-0\%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or noncomputational problem solving skills.

Homework problems
Problem solving 5-20\%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, Free response exams, quizzes

Exams
70-95\%

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects (e.g., computer projects or measurement activities)

Other Category
0-10\%

Representative Textbooks and Materials:

Text(s) required of each student will be selected by the department, a committee of the department, or the responsible instructor from the books currently available. Choices in the past have included:
Trigonometry Enhanced With Graphing Utilities (4th). Sullivan, Michael and Sullivan III, Michael. Prentice Hall: 2006.
Trigonometry (1st). Dugopolski, Mark. Addison Wesley: 2003.

