ELEC 71B Course Outline as of Fall 1997

CATALOG INFORMATION

Dept and Nbr: ELEC 71B Title: ELECTRONIC DEVICES 2

Full Title: Electronic Devices 2 Last Reviewed: 11/5/1997

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	17.5	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

Continuation of the study of Linear electronic circuits. Electronic devices are studied for recertification, amplification, and oscillating circuits.

Prerequisites/Corequisites:

Completion of ELEC 71A and ELEC 71AL. Not open to students who have completed ELEC 61.

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Continuation of Elec 71A. (Grade Only)

Prerequisites/Corequisites: Completion of ELEC 71A and ELEC 71AL. Not open to students

who have completed ELEC 61.

Recommended:

Limits on Enrollment: Transfer Credit: CSU; Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Fall 1981 Inactive: Fall 2009

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Certificate Applicable Course

COURSE CONTENT

Outcomes and Objectives:

The student will be able to:

- 1. recognize the effects of loading upon an individual stage.
- 2. design and evaluate the performance of a JFET amplifier.
- 3. describe the behavior of both series and parallel resonance.
- 4. synthesize the basic power supply with voltage regulation and short circuit protection.
- 5. recall the operating characteristics of an SCR and a TRIAC.
- 6. identify and explain the basic L-C and R-C oscillator circuit.

Topics and Scope:

- 1. Series and parallel resonance, Q and bandwidth.
- 2. Classes of amplification, power amplifiers.
- 3. JFET structure and characteristics.
- 4. MOSFET structure and characteristics.
- 5. Regulated power supplies.
- 6. Short circuit protection.
- 7. S.C.R. crowbar.
- 8. Oscillator basics.
- 9. Vacuum tube triode characteristics.

Assignment:

- 1. Textbook readings.
- 2. Textbook homework problems.
- 3. Handout homework problems.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems, Quizzes, Exams

Problem solving 20 - 30%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Skill Demonstrations 0 - 0%

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, True/false, Matching items, Completion

Exams 40 - 60%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

SEMICONDUCTORS CIRCUITS APPROXIMATIONS by Malvino.