MATH 8A Course Outline as of Fall 2006

CATALOG INFORMATION

Dept and Nbr: MATH 8A Full Title: Brief Calculus 1 Last Reviewed: 4/19/2010

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	3.00	17.5	Lecture Scheduled	52.50
Minimum	3.00	Lab Scheduled	0	6	Lab Scheduled	0
		Contact DHR	0		Contact DHR	0
		Contact Total	3.00		Contact Total	52.50
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 105.00

Total Student Learning Hours: 157.50

Title 5 Category:	AA Degree Applicable
Grading:	Grade Only
Repeatability:	00 - Two Repeats if Grade was D, F, NC, or NP
Also Listed As:	
Formerly:	

Catalog Description:

Limits, continuity, differentiation, analytic geometry, maxima and minima, rates of change and differentials, integration, calculus for exponential and logarithmic functions, calculus of the trigonometric functions, applications and calculator techniques. The 8A/8B sequence constitutes a complete Brief Calculus course and is intended for students majoring in the life or social sciences. Students will not receive credit for both Math 8A and Math 1A.

Prerequisites/Corequisites:

Completion of MATH 27 or higher (VF) OR Course Completion or Current Enrollment in MATH 27 (or MATH 57)

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: Limits, continuity, differentiation, analytic geometry, maxima and minima, rates of change and differentials, integration, calculus for exponential and logarithmic functions, calculus of the trigonometric functions, applications and calculator techniques. For life or social science

majors. Students will not receive credit for both Math 8A and Math 1A (Grade Only) Prerequisites/Corequisites: Completion of MATH 27 or higher (VF) OR Course Completion or Current Enrollment in MATH 27 (or MATH 57) Recommended: Limits on Enrollment: Transfer Credit: CSU;UC. (CAN MATH30)(MATH 8A+MATH 8B=MATH SEQ D) Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area B		Communication and Analytical Thinking		Effective: Spring 1992	Inactive: Fall 2013
CSU GE:	MC Transfer Area B4	Math Competen Math/Quantitati	cy ve Reasoning	Effective: Fall 1992	Inactive: Fall 2013
IGETC:	Transfer Area 2A	Mathematical C Quantitative Rea	oncepts & asoning	Effective: Fall 1993	Inactive: Fall 2013
CSU Transfer:	Transferable	Effective:	Spring 1992	Inactive:	Fall 2013
UC Transfer:	Transferable	Effective:	Spring 1992	Inactive:	Fall 2013

CID:

Certificate/Major Applicable:

Major Applicable Course

COURSE CONTENT

Outcomes and Objectives:

Upon successful completion of the course, students will be able to:

- 1. Calculate limits and use limit notation.
- 2. Determine derivatives of polynomial, rational, algebraic, exponential, and logarithmic functions.
- 3. Use techniques of differentiation, including product, quotient, and chain rules to determine derivatives.
- 4. Use derivatives to solve and analyze graphing, optimization, and science applications.
- 5. Determine antiderivatives of polynomial, rational, algebraic, exponential and logarithmic functions.
- 6. Evaluate definite integrals using the fundamental theorem of calculus.
- 7. Apply definite integration to compute area, volume, arc length, and to solve problems in life sciences, economics and related fields.
- 8. Find derivatives and integrals of trigonometric functions.

Topics and Scope:

Instructional methodology may include, but is not limited to: lecture,

demonstrations, oral recitation, discussion, supervised practice, independent study, outside project or other assignments.

- I. Precalculus
 - A. Real number line and order
 - B. Absolute value
 - C. Exponents and radicals
 - D. Polynomials
 - E. Rational expressions
 - F. Functions and graphs
 - G. Limits and continuity
 - H. Slope
 - I. Distance
- II. The Derivative
 - A. Slope of a curve
 - B. Rates of change
 - C. Chain rule
 - D. Higher order derivatives
 - E. Implicit differentiation
 - F. Differentiation of algebraic, logarithmic and exponential functions
 - G. Applications of the first and second derivative
 - 1. Curve sketching
 - 2. Optimization problems
 - 3. Related rates
 - 4. Differentials
- III. The Integral
 - A. Antiderivatives and indefinite integrals
 - B. Definite integral as limit of sum
 - C. Integration of algebraic, logarithmic and exponential functions
 - D. Midpoint rule for approximating definite integrals
 - E. Integration by substitution
 - F. Applications of the definite integral
 - 1. Area
 - 2. Volume
 - 3. Marginal analysis
- IV. Trigonometric Functions
 - A. Trigonometric functions and their graphs
 - B. Derivative and Integral formulas for the trigonometric functions

Assignment:

- 1. Daily reading outside of class (approximately 0-50 pages per week).
- 2. Problem set assignments from required text(s) or supplementary materials chosen by the instructor.
- 3. Exams and quizzes.
- 4. Projects.

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments are more appropriate for this course.

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework problems

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

None

Exams: All forms of formal testing, other than skill performance exams.

Multiple choice, Projects (eg, computer explor. or game analysis)

Other: Includes any assessment tools that do not logically fit into the above categories.

Projects

Representative Textbooks and Materials:

Text(s) required of each student will be selected by the department, a committee of the department, or the responsible instructor from the books currently available. Among the choices could be: Brief Calculus With Applications (6th ed.). Larson, Ron; Hostetler, Robert; Edwards, Bruce. Houghton-Mifflin: 2003. Writing 0 - 0%

Problem solving 5 - 20%

Skill Demonstrations 0 - 0%

> Exams 70 - 95%

Other Category 0 - 10%