ELEC 82 Course Outline as of Fall 2024

CATALOG INFORMATION

Dept and Nbr: ELEC 82 Title: MECHATRONICS FUND

Full Title: Mechatronics Fundamentals

Last Reviewed: 4/10/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	3.00	Lecture Scheduled	2.50	17.5	Lecture Scheduled	43.75
Minimum	3.00	Lab Scheduled	1.50	8	Lab Scheduled	26.25
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 87.50 Total Student Learning Hours: 157.50

Title 5 Category: AA Degree Applicable

Grading: Grade Only

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly:

Catalog Description:

In this course, students will analyze and control systems that combine mechanical elements with electronic components using computers and/or microcontrollers. Topics include sensors, actuators, servo and stepper motors, and motor controllers.

Prerequisites/Corequisites:

Course Completion of ELEC 54C

Recommended Preparation:

Limits on Enrollment:

Schedule of Classes Information:

Description: In this course, students will analyze and control systems that combine mechanical elements with electronic components using computers and/or microcontrollers. Topics include sensors, actuators, servo and stepper motors, and motor controllers. (Grade Only)

Prerequisites/Corequisites: Course Completion of ELEC 54C

Recommended:

Limits on Enrollment:

Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: **Inactive: CSU GE: Transfer Area** Effective: **Inactive:**

Transfer Area IGETC: Effective: **Inactive:**

CSU Transfer: Transferable Effective: Fall 2018 **Inactive:**

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Identify the different sensor types and measurands; force, temperature, distance, velocity, acceleration, pressure, flow, optical, and chemical.
- 2. Test and plot sensor data to obtain sensor characteristics.
- 3. Demonstrate the operation of servo and stepper motors.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Explain how sensor characteristics and signal conditioning affect a simple system.
- 2. Compare sensing of a measurand using sensors based on different physical effects.
- 3. Test and plot sensor data to obtain sensor characteristics.
- 4. Demonstrate the use of sensors to provide feedback to a control system.
- 5. Design a useful device containing a sensor or actuator and predict its behavior.
- 6. Utilize microcontrollers that use sensors as input and actuators as output.
- 7. Design a motor control system using servo and stepper motors.

Topics and Scope:

- I. Introduction
 - A. Classification of sensors and actuators
 - B. Sensing and actuating strategies C. Transduction

 - D. Evacuation
- II. Performance Characteristics
 - A. Input/output characteristics
 - B. Accuracy and errors
 - C. Frequency response and calibration
 - D. Applications
- III. Temperature Sensors

- A. Thermistors
- B. Resistance temperature sensors
- IV. Optical Sensors
 - A. Photodiodes
 - B. Phototransistors
 - C. Photoresistors
 - D. Infrared
- V. Magnetic Sensors
 - A. Proximity sensors
 - B. Hall sensors
- VI. Mechanical Sensors
 - A. Accelerometers
 - B. Force sensors
 - C. Pressure sensors
- VII. Acoustic Sensors
- VIII. Chemical Sensors
 - A. Humidity
 - B. Moisture
- IX. Motors as Actuators
 - A. Servo motors and controls
 - B. Stepper motors and controls
- X. Interfacing Methods and Circuits
 - A. Bridge circuits
 - B. Interfacing to microprocessors
 - C. Data transmission
 - D. Power requirements
 - E. Noise and interference
- XI. Interfacing to Microprocessors
 - A. General requirements for sensors and actuators
 - B. Input signal conditioning
 - C. Output signals: level, power, and isolation
 - D. Driving methods: direct drive and pulse width modulation (PWM)
- XII. Laboratory Topics
 - A. Temperature and humidity sensors
 - B. Optical sensors
 - C. Magnetic sensors
 - D. Mechanical sensors
 - E. Acoustic sensors
 - F. Chemical sensors
 - G. Servo motors and controls
 - H. Stepper motors and controls
 - I. Interfacing to Arduino

Assignment:

Lecture-Related Assignments:

- 1. Reading (10-30 pages per week)
- 2. Homework assignment(s) (1-4)
- 3. Quizzes (2-6)
- 4. Final exam

Lab-Related Assignments:

- 1. Laboratory assignments (5-12) including demonstrating operation of a sensor-controlled motor
- 2. Lab reports (4-8)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

Lab reports

Writing 20 - 50%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Homework assignment(s)

Problem solving 20 - 30%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Laboratory assignments

Skill Demonstrations 10 - 30%

Exams: All forms of formal testing, other than skill performance exams.

Quizzes; final exam

Exams 20 - 40%

Other: Includes any assessment tools that do not logically fit into the above categories.

None

Other Category 0 - 0%

Representative Textbooks and Materials:

Fundamentals of Mechatronics. Jouaneh, Musa. Cengage Learning. 2013 (classic).