ARCH 65 Course Outline as of Fall 2023

CATALOG INFORMATION

Dept and Nbr: ARCH 65 Title: 3D MODELING WITH REVIT

Full Title: 3D Modeling with Revit

Last Reviewed: 2/6/2023

Units		Course Hours per Week		Nbr of Weeks	Course Hours Total	
Maximum	2.00	Lecture Scheduled	1.00	17.5	Lecture Scheduled	17.50
Minimum	2.00	Lab Scheduled	3.00	6	Lab Scheduled	52.50
		Contact DHR	0		Contact DHR	0
		Contact Total	4.00		Contact Total	70.00
		Non-contact DHR	0		Non-contact DHR	0

Total Out of Class Hours: 35.00 Total Student Learning Hours: 105.00

Title 5 Category: AA Degree Applicable

Grading: Grade or P/NP

Repeatability: 00 - Two Repeats if Grade was D, F, NC, or NP

Also Listed As:

Formerly: ARCH 27

Catalog Description:

In this course, students will learn to use the Building Information Modeling (BIM) application Autodesk Revit for three-dimensional (3D) modeling of buildings or structures as typical for architecture, interior design, and/or landscape design projects.

Prerequisites/Corequisites:

Recommended Preparation:

Eligibility for ENGL 100 or ESL 100 and completion of CS 5

Limits on Enrollment:

Schedule of Classes Information:

Description: In this course, students will learn to use the Building Information Modeling (BIM) application Autodesk Revit for three-dimensional (3D) modeling of buildings or structures as typical for architecture, interior design, and/or landscape design projects. (Grade or P/NP)

Prerequisites/Corequisites:

Recommended: Eligibility for ENGL 100 or ESL 100 and completion of CS 5

Limits on Enrollment:

Transfer Credit: CSU;

Repeatability: Two Repeats if Grade was D, F, NC, or NP

ARTICULATION, MAJOR, and CERTIFICATION INFORMATION:

AS Degree: Area Effective: Inactive: CSU GE: Transfer Area Effective: Inactive:

IGETC: Transfer Area Effective: Inactive:

CSU Transfer: Transferable Effective: Spring 2010 Inactive:

UC Transfer: Effective: Inactive:

CID:

Certificate/Major Applicable:

Both Certificate and Major Applicable

COURSE CONTENT

Student Learning Outcomes:

At the conclusion of this course, the student should be able to:

- 1. Create 3D geometry for modeling of architectural, interior design, and/or landscape design projects using computer software applications.
- 2. Produce rendered images, screen-captured images, and animations of architectural, interior design, and/or landscape design projects.
- 3. Provide real-time navigation through a building model, including display changes such as panning, zooming, orbiting, walk-through, camera setup and changes, and time-of-day and seasonal solar and shadow changes.

Objectives:

At the conclusion of this course, the student should be able to:

- 1. Utilize the Building Information Modeling (BIM) software application Autodesk Revit to create building models typical for residential or commercial projects.
- 2. Use digital tools to apply or control texture, color, light, and shadows to models.
- 3. Export models and views for use in other programs.
- 4. Import image or model information from other sources to use in model creation.
- 5. Print or plot graphic representations of 3D models in various visual styles including hidden line, grayscale, shaded, and realistic.
- 6. Prepare rendered and captured images of architectural, interior design, and/or landscape design projects.
- 7. Provide guided and animated tours of digitally created environments.

Topics and Scope:

- I. Role of Models in Architecture, Interior Design, and Landscape Design
 - A. Simultaneous creation of two-dimensional (2D) content
 - B. Design and form exploration
 - C. Verification of design intent
 - D. Coordination of allied disciplines

- E. Interior and exterior views
- F. Lighting and solar studies
- G. Energy analysis
- H. Structural analysis
- I. Contextual site analysis
- J. Presentation graphics including plans, elevations, sections, perspectives, and rendered images
- II. Principles and Concepts of 3D Modeling and Rendering
 - A. 2D geometry
 - B. Aspects of materials such as value, color, and texture
 - C. Aspects of form and volume such as space, scale, balance, rhythm, and proportion
 - D. Aspects of visualization such as light, focal point, and emphasis

III. Introduction to Revit

- A. Program interface organization and components
- B. Creating 2D geometries such as model lines, detail lines, regions, dimensions, and annotation elements
- C. Creation tools for building elements such walls, windows, doors, floors, ceilings, roofs, foundations, columns, beams, and structural systems
 - D. Creating 3D geometries with model-in-place components and massing
 - E. Identifying and applying textures and colors
 - F. Depicting light and shadow
- G. Importing and exporting information from applications such as Trimble SketchUp, Autodesk AutoCAD, and/or McNeel Rhino3D
 - H. Preparing rendered and captured images
 - I. Generating animations
 - J. Digital tours of the model
 - K. Printing and plotting
- IV. Leveraging Revit with Plug-Ins
 - A. Enscape3D use with Revit
 - B. Lumion use with Revit
 - C. Twinmotion with Revit
 - D. Virtual Reality (VR) with Revit
- V. Presenting the Results of Digital Modeling
- VI. Oral Presentations and Critiques

All topics are covered in both the lecture and lab portions of this course.

Assignment:

Lecture-Related Assignments:

- 1. Reading: Textbook or instructor provided handouts (5-15 pages per week)
- 2. Quiz(zes) (1-3)
- 3. Final exam or modeling project presentation

Lab-Related Assignments:

- 1. Modeling exercises (5-15)
- 2. Guided tours of models (2-4)
- 3. Oral presentations and critiques (6-8)

Methods of Evaluation/Basis of Grade:

Writing: Assessment tools that demonstrate writing skills and/or require students to select, organize and explain ideas in writing.

None, This is a degree applicable course but assessment tools based on writing are not included because problem solving assessments and skill demonstrations are more appropriate for this course.

Writing 0 - 0%

Problem Solving: Assessment tools, other than exams, that demonstrate competence in computational or non-computational problem solving skills.

Modeling exercises

Problem solving 40 - 60%

Skill Demonstrations: All skill-based and physical demonstrations used for assessment purposes including skill performance exams.

Guided tours of models

Skill Demonstrations 10 - 20%

Exams: All forms of formal testing, other than skill performance exams.

Quiz(zes); final exam or modeling project presentation

Exams 10 - 30%

Other: Includes any assessment tools that do not logically fit into the above categories.

Oral presentations and critiques

Other Category 5 - 15%

Representative Textbooks and Materials:

Autodesk Revit 2023 Architecture Basics From the Ground Up. Moss, Elise. SDC Publications. 2022.

Instructor prepared materials